自然降雨对高寒沙地中间锦鸡儿人工林土壤呼吸的影响

2020-09-09 07:16贾志清李清雪何凌仙子杨凯悦
林业科学研究 2020年4期
关键词:变化率降雨量降雨

戴 捷,贾志清,李清雪*,何凌仙子,杨凯悦,高 娅

(1. 中国林业科学研究院荒漠化研究所,北京 100091;2. 中国林业科学研究院林业研究所,北京 100091;3. 青海共和荒漠生态系统定位观测研究站,青海 共和 813005)

土壤是陆地表层系统中最大的碳储库[1],土壤表面碳释放是陆地生态系统中第二大碳通量[2]。一般认为,土壤温湿度是调控土壤呼吸的两个重要环境因子[3];也有研究发现,制约草原生态系统土壤呼吸的主要因子是太阳辐射[4];而降雨引起的干湿交替则直接影响土壤呼吸并通过干扰太阳辐射、土壤水分和土壤温度等间接途径影响土壤呼吸动态[5-6]。据气候模型预测显示,未来全球降雨格局将持续变化,极端干旱和降雨不断升高[7];但降雨对土壤呼吸的影响具有较大的不确定性,其引发的干湿交替过程将显著影响土壤呼吸时空特征、碳通量估算[8]与干旱和半干旱区土壤碳释放过程[9-11]。

现阶段我国研究土壤呼吸对降雨的响应主要集中在森林生态系统[12-13]、草原生态系统[14-15]和农田生态系统[16],对广泛分布于我国西北部干旱与半干旱区的荒漠生态系统的研究鲜有报道,其中,青藏高原的共和盆地是受土地沙漠化影响最严重的区域之一,植被重建是该区域防治土地沙漠化的有效措施[17]。有研究表明,植被恢复可以显著改良土壤理化性质,加速沙成壤进程[18],但水土保持措施也会引起微地形、土壤结构和土壤水分的改变,进而影响土壤呼吸[19]。因此,本研究以共和盆地2013年栽植的中间锦鸡儿(Caragana intermediaKuang et H. C. Fu)人工防风固沙林为例,通过对比降雨前后土壤呼吸与各环境因子的变化,分析自然降雨对土壤呼吸的干扰途径和影响机制,为完善干旱与半干旱区人工林的碳循环估算模型提供参考[20]。

1 研究区概况

本研究在国家林业和草原局青海共和荒漠生态系统定位研究站开展。研究区位于青藏高原东北部,具有明显的高原大陆性气候特征,年均气温2.4℃,降水量246.3 mm,潜在蒸发量1 716.7 mm,无霜期平均91 d。研究区以人工林为主,常见植被有小叶杨(Populus simoniiCarr)、中间锦鸡儿、柠条锦鸡儿(Caragana korshinskiiKom)、乌柳(Salix cheilophilaSchneid)和北沙柳(Salix psammophilaC. Wang et Ch. Y. Yang)等;天然植被主要有芨芨草(Achnatherum splendensNevski)、川青锦鸡儿(Caragana tibeticaKom)灌丛和针茅(Stipaspp.)等[21]。地带性土壤为栗钙土和棕钙土,非地带性土壤是风沙土、盐土和草甸土等,下垫面主要由固定、半固定沙丘及流动沙丘组成。观测样地为半固定沙丘,有麦格沙障,样地面积50 m×50 m,平均海拔2 878 m;2013年直播造林,株行距1 m×1 m,平均株高0.8 m,平均冠幅1.1 m×1.05 m,平均地径6.2 mm。

2 研究方法

2.1 样地土壤呼吸测定

于2018年7月1日至7月30日在生态站的中间锦鸡儿长期观测样地内开展观测。样地土壤呼吸采用3台ACE土壤呼吸自动监测仪(ADC公司,英国)进行连续监测,分别沿样地对角线等距布设,安装前预先清理地表枯落物。该测量系统由封闭透明的呼吸室(面积S=866 cm2,高H=3 cm)和红外气体分析仪组成,采样间隔1 h;土壤温度和土壤含水量数据由布设于样地中心的土壤温湿度传感器5TM(METER公司,美国)获取,采样区间为0~150 cm垂直土壤层(深度梯度:10、20、30、40、60、90、120、150 cm),采样间隔1 h;太阳总辐射、空气温度和降雨量等大气环境因子数据由样地内Dynamet-1k科研级气象站(Dynamax公司,美国)同步获取。

土壤呼吸速率和土壤温度间的关系采用指数模型拟合[22]:

式中:RS(μmol·m-2·s-1)为土壤呼吸速率,T(℃)为土壤温度,a为0℃时土壤呼吸速率,b为温度反应系数。

Q10代表土壤呼吸温度敏感性,即温度每升高10℃土壤呼吸增加的倍数,本文采用Fang等[23]的计算方法,公式如下:

2.2 数据处理与分析

本文利用Microsoft Office Excel 2016软件对土壤呼吸速率、太阳总辐射、空气温度和降雨量等数据进行处理。统计分析在SPSS 24.0软件中完成,采用Pearson相关性分析(双尾)研究自然降雨和土壤呼吸速率及各环境因子间关系;采用回归分析研究降雨和土壤呼吸速率变化率的关系;建立土壤温度和土壤呼吸速率的指数方程,估算Q10值。使用Microsoft Office Excel 2016软件绘图。

3 结果与分析

3.1 环境因子对土壤呼吸的影响

选取观测月内无降雨发生的15 d数据,对比不同深度土壤温度(TS)和土壤含水量(VWC)与土壤呼吸速率(RS)的相关性,发现10 cm深度土壤的TS10和VWC10与RS相关性较强(P<0.01)。分别对RS、空气温度(TA)、TS10、VWC10和太阳总辐射(SR)进行相关性检验,结果(表1)表明:RS与各环境因子均表现为显著强相关(P<0.01,|r|>0.6),表明各环境因子均对RS具有显著影响。各环境因子与TA相关性强弱顺序为:TS10>SR>VWC10;与TS10顺 序 为:TA>VWC10>SR;与VWC10顺序为:TS10>TA>SR;与SR顺序为:TA>TS10>VWC10,即各环境因子间呈SR-TA-TS10-VWC10彼此相关性最强趋势,其可能存在依次相互作用关系。

选取7月25日至7月30日连续无降雨发生的6 d分析RS和各环境因子间相互作用的关系,图1表明:每日各环境因子峰值对应的时间顺序呈SR-TA-TS10-VWC10分布,结合各环境因子间的相关性分析,SR-TA-TS10-VWC10间可能表现为能量传递关系,即SR引起TA波动,进而影响TS10,最终引起VWC10变化,其中,RS与SR峰值对应的时间最接近,均为每日13:00—15::00,表明SR是最先影响RS变化的环境因子。

3.2 自然降雨对土壤呼吸与环境因子日变化的影响

检验观测月内单日累计降雨量和不同深度TS与VWC的相关性,发现10 cm深度土壤的TS和VWC与降雨量相关性较强(P<0.01)。对比降雨量与RS和各环境因子日均值的关系(图2),自然降雨与RS呈显著负相关(P<0.01),且单日累计降雨量大于0.8 mm时RS均明显受到抑制。降雨结束次日,RS迅速回升,该效应约可持续3 d,且累计降雨量越高RS回升越高。如7月3日发生了该月最大单日降雨,对应出现了当月最小RS日均值0.297 μmol·m-2·s-1,次日RS迅速增长了186%,该效应持续至7月6日,累计增长397%。

TA及其离散程度都低于TS10(=5.74,=14.69),自然降雨与二者均呈显著负相关(P<0.01),且单日累计降雨量大于1.4 mm可以明显抑制TA和TS10。自然降雨与VWC10呈显著正相关(P<0.01),单日累计降雨量大于2.8 mm可以明显促进VWC10升高;自然降雨与SR呈显著负相关关系(P<0.01),单日累计降雨量大于0.6 mm时SR明显受到抑制。对比自然降雨与RS和各环境因子间Pearson系数,其相关性表现为:SR(-0.72)>RS(-0.70)>TA(-0.54)>TS10(-0.52)>VWC10(0.41),表明SR对自然降雨的敏感度最高,且大于RS,VWC10最低。

表1 环境因子与土壤呼吸速率的相关性Table 1 Correlation between environmental factors and soil respiration rate

图1 7月25-30日土壤呼吸和环境因子日变化Fig. 1 Diurnal changes in soil respiration and environmental factors from July 25 to July 30

3.3 自然降雨过程对土壤呼吸的影响

对观测月发生的15次自然降雨事件依据单次连续降雨时长(h)和累计降雨量(mm)进行分类统计,并计算降雨强度(mm·h-1),发现RS变化率与降雨时长、降雨量、降雨强度均显著相关(P<0.05),其相关性表现为:降雨量(r=-0.64)>降雨时长(r=-0.43)>降雨强度(r=-0.40)。对比RS和降雨量与不同深度TS和VWC的相关性,发现RS和降雨量均与150 cm深度的TS150和VWC150相关性最强(rRS-TS=0.68,rRS-VWC=0.60;r雨量-TS=0.35,r雨量-VWC=0.37;P<0.01)。

表2表明:降雨发生后,RS低于雨前水平。降雨在0~4 h,RS变化率随降雨时长增加而降低;降雨在3~4 h时RS变化率降至最低,达-65.30%;降雨时长大于4 h时,RS变化率随降雨时长增加而逐渐升高。降雨过程中,TA变化率表现为随降雨时长增加而降低的趋势,TS150和VWC150的变化率则小幅缓慢升高,但三者变化率均始终低于RS,表明RS对降雨时长的敏感度大于TA、TS150和VWC150。由于SR受昼夜因素影响较大,未参与分析。

表3表明:单次累计降雨量在0~12 mm,RS变化率随降雨量增加而降低;降雨量达8~12 mm时,RS变化率降至最低,达-87.42%;降雨量大于12 mm时,RS变化率随降雨量增加而逐渐升高。对RS变化率与降雨量进行回归分析(图3左)发现:降雨量可以解释RS变化率的73.5%。当降雨量大于0.07 mm时,RS即受到抑制;当降雨量达10.44 mm时,RS变化率降至最低,抑制率为-94.65%。降雨过程中,TA均低于雨前水平;降雨量为0~5 mm时,TS150和VWC150表现为随降雨量升高而缓慢升高;当降雨量大于5 mm后,TS150和VWC150逐步恢复至雨前水平;三者变化率均始终低于RS,表明RS对降雨量的敏感度大于TA、TS150和VWC150。

图2 7月土壤呼吸与环境因子日变化Fig. 2 Diurnal changes in soil respiration and environmental factors from July

表2 土壤呼吸速率和环境因子对降雨时长的响应Table 2 Response of soil respiration rate and environmental factors to rainfall time

表3 土壤呼吸速率和环境因子对降雨量的响应Table 3 Response of soil respiration rate and environmental factors to rainfall

图3 累计降雨量和降雨强度对土壤呼吸速率变化率的影响Fig. 3 Effect of accumulated rainfall and rainfall intensity on soil respiration rate of change

对RS变化率与降雨强度(降雨强度=降雨量/降雨时间)进行回归分析(图3右)发现:降雨强度可以解释RS变化的34%。当降雨强度为0~1.95 mm·h-1时,RS变化率随降雨强度增加而降低;当降雨强度为1.95~4.65 mm·h-1时,RS变化率随降雨强度增加而增加;当降雨强度大于4.65 mm·h-1时,RS变化率再次随降雨强度增加而降低。

3.4 土壤呼吸温度敏感性(Q10)对自然降雨的响应

对观测月内无降雨日和自然降雨日RS与不同深度TS数据进行相关性检验,其中,10、90、120、150 cm深度都呈中等程度以上相关关系(P<0.01,|r|≥0.4)。分别对RS和各深度TS数据进行指数方程拟合(P<0.05),结果(表4)表明:自然降雨日各深度Q10值均高于无降雨日45%左右,且整体随土壤深度增加而升高,分别在90 cm和120 cm深度出现最小值和最大值,其中,无自然降雨日Q10值水平均在“2”以下。

表4 土壤呼吸温度敏感性对降雨干扰的响应Table 4 Response of the Q10 to rainfall disturbance

4 讨论

4.1 自然降雨对土壤呼吸的激发效应

1958年Birch发现,在干旱条件下,降雨能使土壤呼吸速率(RS)急剧增加的现象,即“Birch效应”[24],该激发效应在诸多研究中得到验证,并表现为一定量的降雨可以迅速激发RS,当降雨量超过某阈值时才转为抑制作用[25-27]。对该效应的分析,一方面认为,雨水可以迅速置换出土壤空隙中的CO2[28];另一方面认为,雨水可以破坏土壤团聚体释放有机质,促进微生物呼吸[29-32]。

本文在自然降雨对RS日变化影响的研究中发现,日累计降雨量小于0.8 mm时对RS日均值无显著影响,≥0.8 mm会显著抑制RS;自然降雨过程对RS瞬时变化的影响表现为大于0.07 mm的降雨发生就对RS产生抑制作用,即研究区自然降雨发生过程中无“激发效应”出现,该效应通常出现在降雨结束后的3 d内。分析其原因,一方面,自然降雨过程通过降低SR、TA和表层TS水平限制植被光合作用,而雨水迅速填充土壤空隙阻碍土壤与大气间气体交换,使植物根系自养呼吸受到抑制[33];另一方面,荒漠生态系统土壤有机质相对匮乏,雨水从土壤中置换出的CO2较少;同时,雨水入渗过程可以缓解根系的水盐胁迫并促进地表凋落物分解[34-36]。因此,自然降雨结束后,恢复的SR、TA和表层TS与补充的VWC和土壤有机质可以提高微生物活性并促进植被光合作用和根系呼吸[37],从而有效提高RS水平。

4.2 自然降雨对土壤呼吸的抑制作用

RS主要源于植物根系自养呼吸和微生物异养呼吸[38],其不仅受根系活性、土壤微生物和土壤理化性质等因素影响[39-40],还与大气环境有关[41]。本文通过对RS与环境因子日变化的研究发现,SR、TA、TS和VWC均对RS变化有影响,且彼此可能存在依次作用关系,但与李思思等[42]对青海高寒区典型林分RS的研究结果不同,本研究中,SR对RS的影响比温度因子更直接(时间一致性最强),即植物光合作用强烈时RS也旺盛[4,43]。同时无降雨发生时RS主要受表层(10 cm)TS和VWC影响,与中间锦鸡儿浅根系分布的特征相一致[44];而在自然降雨过程中,RS受到显著抑制且转为受深层(150 cm)TS和VWC影响。由此推断,无自然降雨时植物根系自养呼吸是研究区RS的主要来源,其在降雨过程中随光合作用和地表透气性下降而受到明显抑制[28],RS转为以微生物分解深层有机质的异养呼吸主导;而SR不仅在无降雨时对RS有直接影响,其对降雨的响应也最积极(降雨量大于0.6 mm即受到抑制)。因此,本研究认为,当自然降雨发生时,SR最先受到抑制并对RS产生影响,随后TA、TS和VWC协同影响RS变化。

解欢欢等[25]在对祁连山亚高山草地的研究中发现,少量降雨可以显著刺激RS,且降雨强度对RS无显著影响;而本研究与其结果不同,降雨对RS始终表现为抑制作用,且降雨时长、降雨量和降雨强度均对RS有显著影响。究其原因,本研究区地表植被覆盖度比草地生态系统较低,不同强度的降雨可能对土壤的激溅侵蚀差异较大,使土壤物理结构发生改变进而影响RS。

4.3 自然降雨对土壤呼吸温度敏感性(Q10)的影响

土壤呼吸温度敏感系数Q10是评价RS的重要指标之一,了解环境因子对Q10的影响是预测未来气候变化下土壤碳循环的关键[45]。本研究区观测月在未发生降雨时各土壤深度Q10值均小于2,与Jassal等[46]对美国西海岸冷杉林的研究相一致,即VWC处于亏缺状态时,Q10值明显低于“2”;同时发现,自然降雨日的Q10值会升高45%左右,达到2以上水平,表明降雨对Q10值的激发效应可能与VWC关系密切[47-48];随着土壤深度的增加,CO2含量升高[49]且TS更稳定[50],利于提高RuBP羧化酶再生和光和产物向下运转[51],使Q10在降雨和非降雨环境下都随土壤深度增加而升高。

5 结论

(1)研究区各环境因子间可能存在SR-TATS10-VWC10顺序的相互作用关系,且各环境因子共同影响RS,其中,RS对SR最敏感;无降雨日RS主要受表层(10 cm)TS和VWC影响,降雨过程中主要受深层(150 cm)TS和VWC影响;自然降雨过程中SR最先受到抑制,而大于0.8 mm的降雨也会影响RS日变化;

(2)自然降雨过程抑制RS,大于0.07 mm的降雨即对RS产生抑制作用,其中,降雨量对RS的影响最大,降雨时长次之,降雨强度相对最小。当降雨时长达3~4 h,累计降雨量达10.44 mm时,对RS的抑制率最大;

(3)自然降雨对RS的激发效应通常出现在降雨结束后,该效应可以持续约3 d;

(4)自然降雨可使Q10值升高,其对Q10值的影响可能与VWC条件有关。

猜你喜欢
变化率降雨量降雨
来安县水旱灾害分析与防灾措施探讨
基于电流变化率的交流滤波器失谐元件在线辨识方法
德州市多年降雨特征分析
降雨量与面积的关系
例谈中考题中的变化率问题
龙王降雨
泥石流
相位差变化率的快速高精度测量及精度分析
一种船用降雨测量装置的实现
是巧合还是规律?