王新坤,姚吉成,徐胜荣,张中华,朱登平,李 华
喷管仰角和长度对负压反馈射流喷头水力性能的影响
王新坤1,姚吉成1,徐胜荣1,张中华2,朱登平2,李 华2
(1. 江苏大学流体机械工程技术研究中心,镇江 212013;2. 华维节水科技集团股份有限公司/上海节水灌溉工程技术研究中心,上海 201505)
负压反馈射流喷头(简称射流喷头)是中国自主研发的新型中程灌溉喷头。喷管是喷头的重要组成部分,对喷头水力性能影响重大。为针对性研究喷管参数(仰角、长度组合)对射流喷头水力性能的影响,寻找最优喷管参数,开展了不同喷管参数下射流喷头与PY210摇臂式喷头水力性能对比试验。结果表明,在相同主喷嘴尺寸时,不同工作压力和不同喷管参数下,射流喷头均同比摇臂式喷头射程远1~2.5 m;射流喷头水量分布中近程呈现较好的“三角形”分布,远处出现水量“凸峰”。最后对试验数据采用综合评分法和熵权法进行分析,同时综合考虑实际喷头野外抗风性能和单一造价,确定最优综合评分下的主副喷管参数为:主副喷管长度组合4.2 cm×4.2 cm,工作压力为0.20~0.30 MPa时,主副喷管仰角40°×40°;工作压力为0.35 MPa时,主副喷管仰角30°×30°。
喷管;射程;水量分布;综合评分法;负压反馈射流喷头
喷灌是国际公认的一种高效节水灌溉技术,广泛应用于农业、畜牧业、园林景观等领域[1-2]。喷头是喷灌系统的重要组成部分,其性能的好坏直接影响着喷灌工程的整体造价和喷洒效果[3-5]。喷头的水力性能主要包括射程,喷洒均匀度,雨滴打击强度等。射程决定了喷洒湿润面积,进一步直接影响喷头间距布置、管道间距、喷头数量及支管用量,从而影响喷灌工程的投资[6]。喷洒均匀度和雨滴打击强度决定着整体喷洒效果和适用的作物和土壤类型[7]。喷洒均匀度越高喷洒效果越好,有利于作物的均匀生长;雨滴打击强度越小对作物和土壤打击伤害越小,喷头适用范围也越广[8-9]。
摇臂式喷头是目前市场上应用最为广泛的喷头之一,具有性能稳定,喷洒均匀性好等优点,但其驱动机构较复杂,易磨损老化[10-12]。全射流喷头是中国自主研发的一种新型灌溉喷头,利用射流的附壁效应完成喷头的直射、步进和反向功能,具有结构简单,水力性能好等优点[13-15]。负压反馈射流喷头(以下简称射流喷头)是王新坤等[16-18]基于射流附壁切换技术设计的一种国产新型灌溉喷头,其团队随后针对射流喷头的射流原件参数对脉冲特性的影响进行了模拟选优研究,并对不同直径主副喷嘴组合下喷头水力性能进行试验研究,研究表明射流喷头结构简单,脉冲特性显著,水力性能较好。喷管是喷头的重要组成部分,其仰角和长度组合对喷头的水力性能影响较大[19-20]。区别于摇臂式喷头的双向无切换连续出射特性,射流喷头具有独特的水流左右两侧偏转,脉冲间断出射的特点,导致其水流湍能较大,平顺度差。合适的主副喷管仰角和长度组合有助于减少压力水流与喷管内壁的碰撞能量损失,增加水流出射平顺度,对喷头水力性能具有重要影响,但目前未有针对性研究。鉴于此,本文对射流喷头主副喷管仰角和长度组合对喷头射程,雨量分布,喷灌均匀性等水力性能影响进行研究,以期为该型国产喷头工程应用提供可借鉴的理论数据支撑。
基于射流附壁切换技术设计的射流喷头,工作时压力水流会进行左右周期性偏转出射,水流的高频次偏转与碰撞会造成较大能量损失。图1为射流喷头流道结构与射流偏转右侧时的Fluent模拟压力云图[21]。由图1 b分析可知,当红色主射流偏转至右侧时,会与右侧喷管内壁产生多次碰撞,而碰撞会加大横向环流和涡流的产生,造成能量损失,同时影响喷头出射水流平顺度,对喷头稳定性和水力性能影响显著。合适的主副喷管仰角和长度组合有利于减少压力水流的碰撞损失,增加出射水流平顺度。
注:是喷头进口公称直径,mm;1是进口收缩角,(°);是射流元件进口宽度,mm;是射流元件进口深度,mm;是控制道宽度,mm;是位差,mm;是侧壁倾角,(°);1是劈距,mm;c1是分流劈半径,mm;cp是弯头曲率半径,mm;cm1是主喷管长度,cm;cm2是副喷管长度,cm;是喷管仰角,(°);c1是主喷嘴直径,mm;c2是副喷嘴直径,mm。
Note:is the nominal diameter of the sprinkler inlet, mm;1is the inlet contraction angle, °;is the inlet width of the jet element, mm;is the inlet depth of the jet element, mm;is the width of the control channel, mm;is the offset mm;is the side wall inclination angle, (°);1is the split pitch, mm;c1is the shunt structure radius, mm;cpis the radius of curvature of the elbow, mm;cm1is the length of the main nozzle, cm;cm2is the length of the sub-nozzle, cm;is the elevation angle of the nozzle, (°);c1is the diameter of the main nozzle, mm;c2is the diameter of the sub-nozzle, mm.
图1 负压反馈射流喷头流道结构与压力云图
Fig.1 Negative pressure feedback jet sprinkler flow channel and pressure contour
试验于江苏大学喷灌试验室内进行,针对不同喷管仰角和长度组合下的射流喷头和PY210摇臂式喷头(以下简称摇臂喷头)进行水力性能对比试验。摇臂喷头的主要参数为:主副喷管仰角均为30°,长度4.5 cm×25 cm,主副喷嘴直径4 mm×3 mm。考虑到喷头的整体设计和喷管直径对压力补偿系数的影响[22-24],设计喷管直径为7 mm。中、近射程喷头的喷管长度一般取4~10[25],因此试验所用的“主×副”喷管长度设计为4.2 cm×4.2 cm、5.6 cm×4.2 cm、7.0 cm×4.2 cm、5.6 cm×5.6 cm、7.0 cm× 5.6 cm、7.0 cm×7.0 cm;仰角参照摇臂式喷头设计[26]分别取20°、30°、40°和50°。
试验采用控制变量法。在研究不同主副喷管仰角对喷头水力性能影响时,保持喷头其他尺寸不变,主要为位差2 mm;侧壁倾角10°;劈距28 mm;主副喷管长度组合4.2 cm×4.2 cm;主副喷嘴直径4 mm×4 mm。同理在研究不同喷管组合对射流喷头水力性能影响时,主副喷管仰角控制为30°,其他尺寸保持不变。同时,考虑到主副喷管采用不同仰角会引起喷头受到的侧向压力不对称,影响喷头转动均匀性,试验中主副喷管仰角采取同步变化;由于转动周期对射程对比影响较大,为减少试验误差,试验中通过增减塑胶垫片来调整转动机构的松紧度进而控制喷头转动周期,按照《喷灌工程技术规范》[27]转动周期控制在3.0~3.5 min。具体试验方案设计参照GB/T 22999-2008[28]。
旋转式喷头的性能评价指标较多,主要有射程、喷灌均匀性等。因此对试验结果采用综合评分法[29]进行分析选优。在多指标综合评价体系中,权重的选取直接影响着最终评分结果。权重的确定主要分为主观赋权法和客观赋权法两大类。主观赋权法是由相关行业专家凭借积累的经验进行选取权重的方法,不受指标取值的影响;客观赋权法是根据原始数据之间的关系,通过一定的数学方法来进行权重选取的方法,其结果不依赖人的主观判断,具有较强的数学理论依据。常用的客观赋权法主要有熵权法、主成分分析法、层次分析法、标准离差法等。本文选择熵权法进行权重的选取,并采用直接加权法进行综合评分。具体计算方法如下[30]:
对个样本,个指标,y为第个样本的第个指标的数值(1…,;=1,…,),本文y指不同试验工况下的灌水均匀性系数与射程的试验值。
各指标标准化处理:
第项指标的熵值:
各项指标的权重:
其中,d=1−e。
各工况下的综合得分:
不同喷管仰角和喷管长度组合下的射流喷头与摇臂喷头的射程对比,如图2所示。由图2a可以看出,仅当喷管仰角为20°时射流喷头射程小于PY210摇臂喷头,其余仰角下射流喷头在不同压力下的射程均同比摇臂喷头远1 ~2.5 m,主要是由于射流喷头出射水流具有强烈脉冲湍动能引起的。当喷管仰角为30°时,射流喷头射程随工作压力增加呈递增趋势,且仰角为30°,工作压力为0.35 MPa时射程达到最大值14 m,此时仰角较为合适;当喷管仰角为40°和50°时,射程随着工作压力增加呈先增后减趋势,工作压力为0.25 MPa时达到极大值13.7 m,主要是因为压力增大导致出射水流破碎加剧,射流末端破碎加剧引起末端水帘迎风阻力增加,导致喷头射程减小。
由图2b可以看出,当主副喷管长度组合为4.2 cm× 4.2 cm、5.6 cm×4.2 cm、7.0 cm×4.2 cm时,射流喷头的射程同比PY10摇臂式喷头较远,其中主副喷管组合为4.2 cm×4.2 cm时射程最远,在0.30 MPa时达到极大值13.5 m;且在副喷管长度不变情况下,喷头射程随主喷管长度增加而减小,这是因为射流喷头喷管内部流动为高频脉冲间断冲击出流,喷管长度增加会加剧内部水流的碰撞,水流紊乱程度加剧,导致压力损失增加引起射程减小;同时射程随着工作压力增加呈先增后减趋势,主要是因为压力增大导致出射水流破碎加剧,主射流剥离加剧,导致射程减小。由主副喷管长度组合为7.0 cm× 4.2 cm、7.0 cm×5.6 cm、7.0 cm×7.0 cm时,喷头射程变化趋势可以看出,在主喷管长度不变的情况下,喷头射程随副喷管长度增加而减小,这是由于喷头内部的射流偏转不仅与控制管处的偏向流有关,主副喷嘴处的脉冲压力回流对射流的偏转也具有较大影响,副喷管长度增加在一定程度上对主射流偏转产生了影响,造成主喷管内部水流流态的变化,进而引起喷头射程的变化。
图2 不同喷管仰角和长度组合下射流喷头与摇臂式喷头射程对比
图3、4分别为不同喷管仰角和不同主副喷管长度组合下的射流喷头与摇臂式喷头径向降水曲线对比图。对于中近程喷头要求径向降水曲线成三角形较好[31]。由图3可以看出,不同工作压力下,摇臂喷头的径向降水曲线差别较小,均表现为水量距喷头距离近处少,中间多,整体呈梯形分布。
图3 不同工作压力和喷管仰角下射流喷头与摇臂喷头径向降水深对比
对于射流喷头,当喷管仰角为20°时,在不同工作压力下,水量分布整体相似,呈现近处和远处的水量多、中间少趋势,在距离喷头6~8 m处,出现水量凹峰,主要是因为小仰角下副喷嘴的射程较近。
当喷管仰角为30°、40°时,在工作压力为0.20、0.30、0.35 MPa时径向水量呈现近、中处多趋势,在距离喷头8~10 m处,出现水量凹峰。0.25 MPa下主副喷嘴射程搭配较好,水量分布整体呈现类“三角形”。
当喷管仰角为50°时,径向水量呈现近处多,中间少分布。在2~4 m处水量骤然增加,主要是由于仰角过大,水滴在空中破碎,漂移近处较多。8~10 m处水量凹峰的出现,主要是因为高仰角下副喷嘴射程较近,主副喷嘴射程搭配不合理。
由图4可以看出,不同主副喷管长度组合下的射流喷头径向降水曲线变化趋势差别较小,说明喷管长度变化对水量分布影响较小。水量分布主要呈现近中处“三角形分布”,远处水量增加,形成水量凸峰,且随着工作压力增大凸峰高度不断降低,这是由于压力的增加加剧了射流的破碎,使得水量分布更加均匀,水量凸峰变缓。水量凸峰的形成主要是因为射流喷头的脉冲间断出射水流的湍动能较大,导致末端水滴较大,因此末端水量较多。总体来看,在0.35 MPa下的水量分布较好,呈“三角形分布”,主要是由于大压力下的出射水流破碎,雾化效果较好,一定程度上弥补了中间水量。
图4 不同工作压力和喷管长度组合下射流喷头与摇臂喷头径向降水深对比图
单一喷头的喷灌均匀性系数在实际工程应用中意义不大。因此在测量不同喷管仰角与长度组合下的喷灌均匀性试验中,采用喷灌工程中常用的正方形布置,各喷头组合间距1.2(为射程)[32]。喷灌均匀性系数计算,根据图3、4的喷头径向降水深,采用喷灌工程中常用的Christiansen法[33-34]由MATLAB软件编程计算得出。
图5为不同喷管仰角和不同长度组合下的射流喷头与PY210摇臂式喷头的喷灌均匀性系数随工作压力变化趋势对比图。由图5 a可知,对于射流喷头喷管仰角越大,喷灌均匀性越高。不同喷管仰角下的射流喷头喷灌均匀性与摇臂式同比较低,相差范围为0~13%。且当进口水压为0.25 MPa和0.35 MPa时,除喷管仰角20°外,其他仰角下的射流喷头喷灌均匀性相差较小。由图5b可知,主副喷管组合为4.2 cm×4.2 cm、7.0 cm×4.2 cm时,射流喷头喷灌均匀性较高且随工作压力波动较小与摇臂式喷头相似。其他喷管长度组合下的喷灌均匀性较差,喷灌均匀性随压力增加而增加,其中主副喷管组合为7.0 cm×7.0 cm和7.0 cm×5.6 cm时,分别在工作压力为0.30和0.35 MPa时喷灌均匀性系数同比摇臂式喷头较高。
图5 不同喷管仰角和长度组合下的射流喷头与摇臂式喷头喷灌均匀性系数对比
不同喷管仰角和长度组合下射流喷头水力性能试验结果分析如表1、2所示。
表1 不同主副喷管仰角组合试验结果分析
注:灌水均匀性系数与射程的权重分别为0.5576,0.4424。
Note: Weights of the irrigation uniformity coefficient and range are 0.5576, 0.4424, respectively.
表2 不同主副喷管长度组合多指标试验结果分析
注:灌水均匀性系数与射程的权重分别为0.611 8,0.388 2
Note: Weights of the irrigation uniformity coefficient and range are 0.611 8 ,0.388 2, respectively.
以S作为喷头综合水力性能评价指标,当工作压力为0.20 MPa,主副喷管仰角为50°×50°时,单一工况下综合评分最高为0.823;当工作压力为0.35 MPa,主副喷管仰角为30°×30°时次之,单一工况综合评分为0.716。同时,当主副喷管仰角为40°×40°时,喷头在压力为0.25~0.35 MPa评分也较高,为0.707~0.718。
由于喷灌工程在实际运行时,喷头工作压力为额定值,且工作压力是影响喷灌系统实际运行能耗的重要指标,同时喷管仰角越大,喷头野外运行抗风性越差,不利于喷头性能发挥。综合考虑设计工作压力对喷灌工程造价的影响和喷头的野外抗风性能。不宜采用主副喷管仰角为50°×50°,建议喷灌工程设计工作压力为0.35 MPa时,主副喷管仰角为30°×30°。设计工作压力为0.20~0.30 MPa时,采用主副喷管仰角为40°×40°。
喷管越长,单一喷头的成本也相应越高。同时工作压力越高,喷灌工程能耗也越高。当主副喷灌组合为4.2 cm×4.2 cm时,各压力下评分均较高。结合以上分析结果,综合考虑成本和综合评分结果,主副喷管长度组合择优选用4.2 cm×4.2 cm。
1)通过对不同主副喷管参数(包括仰角与长度)的负压反馈射流喷头与PY210摇臂式喷头的射程进行对比试验,发现射流喷头的射程同比摇臂远1~2.5 m,主要是由于射流喷头出射水流具有强烈脉冲湍能。
2)试验发现,负压反馈射流喷头水量分布不同于摇臂式喷头,不同工作压力下的近中处水量分布整体呈现“三角形”分布,在射程远处会出现一个水量“凸峰”,“凸峰”随工作压力增加渐缓。
3)采用综合评分法对试验数据进行评价分析,并综合考虑实际运行的抗风性能、成本,给出了负压反馈射流喷头主副喷管的建议工作参数分别为:主副喷管长度组合4.2 cm×4.2 cm,工作压力为0.20~0.30 MPa时,主副喷管仰角40°×40°;工作压力为0.35 MPa时,主副喷管仰角30°×30°。
由于负压反馈射流喷头设计还处于初级阶段,本文并未对影响喷头水量分布影响较大的驱动挡板进行针对性研究,后续可开展相应研究。同时可增加对喷管内增设稳流器进行相关模拟与试验研究,进一步优化喷头水力性能。
[1] 康绍忠. 贯彻落实国家节水行动方案推动农业适水发展与绿色高效节水[J]. 中国水利,2019(13):1-6.
Kang Shaozhong. National water conservation initiative for promoting water-adapted and green agriculture and highly-efficient water use[J]. China Water Resources, 2019(13): 1-6. (in Chinese with English abstract)
[2] 袁寿其,李红,王新坤. 中国节水灌溉装备发展现状、问题、趋势与建议[J]. 排灌机械工程学报,2015,33(1):78-92.
Yuan Shouqi, Li Hong, Wang Xinkun. Status, problems, trends and suggestions for water-saving irrigation equipment in China[J]. Journal of Drainage and Irrigation Machinery Engineering, 2015, 33(1): 78-92. (in Chinese with English abstract)
[3] 袁寿其,李红,王新坤,等. 喷微灌技术与设备[M]. 北京:中国水利水电出版社,2015.
[4] 李红,袁寿其,谢福琪,等. 隙控式全射流喷头性能特点及与摇臂式喷头的比较研究[J]. 农业工程学报,2006,22(5):82-85.
Li Hong, Yuan Shouqi, Xie Fuqi, et al. Performance characteristics of fluidic sprinkler controlled by clearance and comparison with impact sprinkler[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(5): 82-85. (in Chinese with English abstract)
[5] 严海军,刘竹青,王福星,等. 我国摇臂式喷头的研究与发展[J]. 中国农业大学学报,2007,12(1):77-80.
Yan Haijun, Liu Zhuqing, Wang Fuxing, et al. Research and development of impact sprinklers in China[J]. Journal of China Agricultural University, 2007, 12(1): 77-80. (in Chinese with English abstract)
[6] 喻黎明. 国内外几种主要喷头水力性能测试与评价[D]. 杨凌:西北农林科技大学,2002.
Yu Liming. The Test and the Remark of the Hydraulic Performance of Several Main Sprinklers at Home and Abroad[D]. Yangling: Northwest A&F University, 2002. (in Chinese with English abstract)
[7] 朱忠锐,范永申,段福义,等. 喷灌灌水与施肥对春小麦水分动态及产量的影响[J]. 排灌机械工程学报,2019,37(2):174-178.
Zhu Zhongrui, Fan Yongshen, Duan Fuyi, et al. Effects of sprinkler irrigation and fertilization on water dynamic and yield of spring wheat[J]. Journal of Drainage and Irrigation Engineering, 2019, 37(2): 174-178. (in Chinese with English abstract)
[8] 李英能. 对我国喷灌技术发展若干问题的探讨[J]. 节水灌溉,2000(1):1-3.
Li Yingneng. A discussion on several problems of sprinkler irrigation technique development in China[J]. Water Saving Irrigation, 2000(1): 1-3. (in Chinese with English abstract)
[9] 施少培,谢崇宝,高虹,等. 喷灌技术发展历程及设备存在问题的探讨[J]. 节水灌溉,2013(11):78-81.
Shi Shaopei, Xie Chongbao, Gao Hong, et al. Sprinkler irrigation technology development and existing equipment problems[J]. Water Saving Irrigation, 2013(11): 78-81. (in Chinese with English abstract)
[10] 王子君,惠鑫,黎耀军,等. 摇臂式喷头喷嘴结构改进及水力性能试验研究[J]. 水利学报,2019,50(4):1-9.
Wang Zijun, Hui Xin, Li Yaojun, et al. Optimization of nozzle structure and investigation on hydraulic performance of impact sprinkler[J]. Journal of Hydraulic Engineering, 2019, 50(4): 1-9. (in Chinese with English abstract)
[11] 范兴科,吴普特,冯浩,等. 全圆旋转摇臂式喷头的非圆形域喷洒[J]. 灌溉排水学报,2006,25(1):58-61.
Fan Xingke, Wu Pute, Feng Hao, et al. Non-circular spray region of the round rotatory rocker arm sprinkler[J]. Journal of Irrigation & Drainage, 2006, 25(1): 58-61. (in Chinese with English abstract)
[12] 汤跃,赵进,陈超,基于ADAMS的垂直摇臂式喷头多体动力学建模与优化[J]. 农机化研究,2016(9):28-32.
Tang Yue, Zhao Jin, Chen Chao. Dynamic simulation and optimization of vertical impact drive sprinkler by considering friction coefficient[J]. Journal of Agricultural Mechanization Research, 2016(9): 28-32. (in Chinese with English abstract)
[13] 朱兴业,袁寿其,李红. 全射流喷头与摇臂式喷头的对比实验[J]. 农业机械学报,2008,39(2):70-72.
Zhu Xingye, Yuan Shouqi, Li Hong. Compared experiments between complete fluidic sprinkler and impact sprinkler[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(2): 70-72. (in Chinese with English abstract)
[14] 刘俊萍,袁寿其,李红,等. 全射流喷头射程与喷洒均匀性影响因素分析与试验[J]. 农业机械学报,2008,39(11):51-54.
Liu Junping, Yuan Shouqi, Li Hong, et al. Analysis and experiment on influencing factors of range and spraying uniformity for complete fluidic sprinkler[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(11): 51-54. (in Chinese with English abstract)
[15] 袁寿其,朱兴业,李红,等. 全射流喷头内部流场计算流体动力学数值模拟[J]. 农业机械学报,2005,36(10):46-49.
Yuan Shouqi, Zhu Xingye, Li Hong, et al. Numerical simulation of inner flow for complete fluidic sprinkler using computational fluid dynamics[J]. Transactions of the Chinese Society for Agricultural Machinery, 2005, 36(10): 46-49. (in Chinese with English abstract)
[16] 王新坤. 一种双喷嘴射流喷头及喷洒方法. CN105944856B[P]. 2019-01-08.
[17] 王新坤,徐胜荣,樊二东,等. 全圆旋转射流喷头设计与水力性能试验[J]. 农业机械学报,2019,50(2):132-137,146. Wang Xinkun, Xu Shengrong, Fan Erdong, et al. Structure design and hydraulic performance test of round rotatory jet sprinkler[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(2): 132-137, 146. (in Chinese with English abstract)
[18] 王新坤,薛子龙,徐胜荣,等. 双喷嘴负压反馈射流喷头水力性能研究[J]. 农业机械学报,2019,50(11):278-284.
Wang Xinkun, Xue Zilong, Xu Shengrong, et al. Hydraulic performance of negative pressure feedback jet sprinkler with double nozzles[J] Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(11): 278-284, 146. (in Chinese with English abstract)
[19] 王玄,李广,郭聪聪,等. 摇臂式喷头副喷嘴仰角及位置参数的优化[J]. 农业工程学报,2015,31(11):89-95.
Wang Xuan, Li Guang, Guo Congcong, et al. Optimization of impact sprinkler sub-nozzle parameters of elevation angle and position[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(11): 89-95.(in Chinese with English abstract)
[20] 蒋定生,摇臂式喷头设计原理[M]. 北京:水利出版社,1981.
[21] 王新坤,姚吉成,徐胜荣,等. 负压反馈射流喷头脉冲特性及其影响规律[J]. 农业工程学报,2020,36(4):90-97.
Wang Xinkun, Yao Jicheng, Xu Shengrong, et al. Pulse characteristics and its influence of negative pressure feedback jet sprinkler[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(4): 90-97. (in Chinese with English abstract)
[22] 李星恕,张建宾,韩文霆. 仰角可调摇臂式喷头水力性能试验[J]. 农业机械学报,2015,46(2):34-38.
Li Xingshu, Zhang Jianbin, Han Wenting, Experiments on hydraulic performance of impact sprinkler with adjustable elevation angel[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2): 34-38. (in Chinese with English abstract)
[23] 辛利. 音波振荡器振荡性研究及应用[D]. 大连:大连理工大学,2010.
Xin Li. Study on the Oscillation of Sonic Oscillator and Application[D]. Dalian: Dalian University of Technology, 2010. (in Chinese with English abstract)
[24] 陈祖志. 射流振荡制冷机性能与机理研究[D]. 大连:大连理工大学,2008.
Chen Zuzhi. Study on Performance and Mechanism of Jet-Oscillation Refrigerator[D]. Dalian: Dalian University of Technology, 2008. (in Chinese with English abstract)
[25] 李世英,喷灌喷头理论与设计[M]. 北京:兵器工业出版社,1995.
[26] 蒋定生,金兆森. 摇臂式喷头设计原理[M]. 北京:水利出版社,1981:71.
[27] 喷灌工程技术规范:GB/T 50085—2007[S]. 北京:中国计划出版社,2007.
[28] 全国农业机械标准化技术委员会. 旋转式喷头:GB/T 22999—2008[S]. 北京:中国标准出版社,2008.
[29] 朱兴业,袁寿其,向清江,等. 旋转式射流喷头设计与性能正交试验[J]. 农业机械学报,2008,39(7):76-79.
Zhu Xinye, Yuan Shouqi, Xiang Qingjiang, et al. Orthogonal experiment on design and performance of a rotational jet sprinkler[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(7): 76-79. (in Chinese with English abstract)
[30] 信桂新,杨朝现,杨庆媛,等. 用熵权法和改进TOPSIS模型评价高标准基本农田建设后效应[J]. 农业工程学报,2017,33(1):238-249.
Xin Guixin, Yang Chaoxian, Yang Qingyuan, et al. Post-evaluation of well-facilitied capital farmland construction based on entropy weight method and improved TOPSIS model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(1): 238-249. (in Chinese with English abstract)
[31] 吴普特,朱德兰,吕宏兴等. 灌溉水力学引论[M]. 北京:科学出版社,2016:134.
[32] 周世峰. 喷灌工程技术[M]. 郑州:黄河水利出版社,2011.
[33] 全国农业机械标准化技术委员会. 旋转式喷头第二部分:水量分布均匀性和试验方法:GB/T 19795.2—2005[S]. 北京:中国标准出版社,2005.
[34] 韩文霆,吴普特,杨青,等. 喷灌水量分布均匀性评价指标比较及研究进展[J]. 农业工程学报,2005,21(9):172-177.
Han Wenting, Wu Pute, Yang Qing, et al. Advances and comparisons of uniformity evaluation index of sprinkle irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(9): 172-177. (in Chinese with English abstract)
Effects of nozzle elevation and length on hydraulic performance of negative pressure feedback jet sprinkler
Wang Xinkun1, Yao Jicheng1, Xu Shengrong1, Zhang Zhonghua2, Zhu Dengping2, Li Hua2
(1.212013,; 2.201505,)
The negative pressure feedback jet sprinkler is a new type of irrigation nozzle independently developed by China. The nozzle is an important part of the sprinkler. Due to the unique water flow of the jet sprinkler, the ejection mechanism is intermittently deflected from left to right, the water will collide with the inner wall of the nozzle, and the collision will cause a large amount of energy loss. Appropriate nozzle parameters are conducive to reducing the head loss and increasing the nozzle range and the uniformity of the combined irrigation. In order to specifically study the influence of nozzle parameters (including elevation angle and length combination) on the hydraulic performance of negative pressure feedback jet sprinklers and find the optimal nozzle parameter combination, the sprinkler comparison tests for negative pressure feedback jet sprinkler and PY210 rocker sprinkler under different nozzle parameters were performed. The main parameters of the PY210 impact sprinkler were the elevation angle of the main and auxiliary nozzles 30°, the length 45 mm×25 mm, and the diameter of the main and auxiliary spray head 4 mm×3 mm. The controlled variable method was used in the test. Namely, keeping the other dimensions of the sprinkler unchanged when studying the influence of different main and auxiliary nozzle elevation angles on the hydraulic performance of the sprinkler. The parameters mainly for the jet mechanism were offset 2 mm, side wall inclination angle 10°, split pitch 28 mm, main and auxiliary nozzle length combination 4.2 cm×4.2 cm, main and auxiliary nozzle spray head 4 mm×4 mm. Similarly, when studying the effect of different nozzle combinations on the hydraulic performance of the jet sprinkler, the elevation angle of the main and auxiliary nozzles was controlled to 30°, and the size of the spray mechanism was the same as the diameter of the main and auxiliary nozzles. At the same time, considering that the main and auxiliary nozzles adopt different elevation angles, the pressure on the nozzles will be asymmetric, which will affect the rotation uniformity of the nozzles. During the tests, the elevation angles of the main and auxiliary nozzles will be synchronized. In order to reduce the test error, the tightness of the rotation mechanism was adjusted by adding or removing plastic gaskets during the test, and then the rotation period of the nozzle was controlled. According to the GB/T 50085-2007, the rotation period was controlled from 3 min to 3.5 min. The specific test scheme design refers to the national standard GB/T 22999-2008. The experimental results showed that with the same nozzle size, the range of the negative pressure feedback jet nozzle was 1-2.5 m farther than the PY210 impact sprinkler under different working pressure and different nozzle parameters. The range of the negative pressure feedback jet nozzle was far because of its unique pulse characteristics, which resulted in the strong pulse turbulence of the outgoing water stream. In the negative pressure feedback jet nozzle, the water distribution of the nozzle showed a good “triangular” distribution in the short range. The water volume distribution showed a “water volume peak” far away from the sprinkler, and as the pressure increases, the “water volume peak” gradually disappeared. The formation of the “convex peak” of water volume is mainly due to the large turbulent kinetic energy of the intermittently ejected water jet from the jet nozzle, which resulted in a larger water droplet at the end, so the end has more water. Finally, based on the measured experimental data, a comprehensive scoring method and an entropy weight method were used. Taking into account the wind resistance of the sprinkler field work and the nozzle cost, the parameters of the main and auxiliary nozzles under the optimal comprehensive score were determined as follows. The length of the main and auxiliary nozzles was 4.2 cm×4.2 cm, when the working pressure was 0.20-0.30 MPa, the elevation angle of the main and auxiliary nozzles was 40°×40° while the working pressure was 0.35 MPa, the elevation angle of the main and auxiliary nozzles was 30°×30°.
nozzle; range; water distribution; comprehensive scoring method; negative pressure feedback jet sprinkler
王新坤,姚吉成,徐胜荣,等. 喷管仰角和长度对负压反馈射流喷头水力性能的影响[J]. 农业工程学报,2020,36(13):75-82.doi:10.11975/j.issn.1002-6819.2020.13.009 http://www.tcsae.org
Wang Xinkun, Yao Jicheng, Xu Shengrong, et al. Effects of nozzle elevation and length on hydraulic performance of negative pressure feedback jet sprinkler[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(13): 75-82. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.13.009 http://www.tcsae.org
2020-01-25
2020-06-05
江苏省科技计划项目(BE2018373)和国家自然科学基金项目(51579116)
王新坤,博士,研究员,主要从事节水灌溉理论与新技术研究。Email:xjwxk@126.com
10.11975/j.issn.1002-6819.2020.13.009
S277.9+4
A
1002-6819(2020)-13-0075-08