青藏高原东南缘腾冲后碰撞粗面安山岩形成的深部岩浆过程:来自辉长质物质的启示*

2020-08-11 07:36成智慧杨志军赵文斌张茂亮雷鸣马琳李菊景
岩石学报 2020年7期
关键词:单斜包体安山岩

成智慧 杨志军 赵文斌 张茂亮 雷鸣 马琳 李菊景

1. 中山大学地球科学与工程学院,广州 5102752. 广东省地质过程与矿产资源探查重点实验室,广州 5102753. 中国科学院地质与地球物理研究所,新生代地质与环境重点实验室,北京 1000294. 天津大学表层地球系统科学研究院,天津 300072

作为大陆地壳的平均组成,安山岩的成因对于揭示陆壳形成与演化具有重要的意义(Taylor and McLennan, 1985; Rudnick and Gao, 2003; Kelemen and Behn, 2016)。安山质岩浆主要为玄武质熔体在地壳不同深度的岩浆房经历岩浆混合(Tepleyetal., 2000; Reubi and Blundy, 2009; Kentetal., 2010; Laumonieretal., 2014; Fodor and Johnson, 2016)、分离结晶(FC)(Gill, 1981)或地壳混染与分离结晶(AFC)(Grove and Donnelly-Nolan, 1986; Groveetal., 2003; Annenetal., 2006; Priceetal., 2016)等过程的产物。岩石学、矿物学和全岩地球化学等特征被广泛用于探讨安山岩的成因(Humphreysetal., 2006; Davidsonetal., 2007; Priceetal., 2016)。大量的研究成果表明,安山岩携带的超基性-基性岩包体为探究安山岩的成因提供了独特的窗口(Stamperetal., 2014; Priceetal., 2016; Camejo-Harryetal., 2018; Cooperetal., 2019)。

辉长岩包体是安山岩中较为常见的一类包体,在俯冲带和洋岛等火山活动伴随的玄武安山-安山质喷发物中均发现了大量的辉长岩包体。前者如南安第斯火山带(Costaetal., 2002)、小安德烈斯火山带(Arculus and Wills, 1980; Stamperetal., 2014; Camejo-Harryetal., 2018; Cooperetal., 2019)、新西兰北岛火山(Priceetal., 2016)等,后者如夏威夷火山(Fodoretal., 1993; Shamberger and Hammer, 2006)和基拉韦尔火山(Fodor and Moore, 1994)等。这些辉长岩包体可能代表岩浆上升过程中捕获的地壳组分,也可能是岩浆系统早期或同期堆晶或分离结晶的产物。地壳辉长岩包体通常具有高压麻粒岩的粒状变晶结构,矿物经常有明显的变形或破碎(Costaetal., 2002; Stamperetal., 2014; Priceetal., 2016; Camejo-Harryetal., 2018)。来自岩浆房系统的辉长岩通常与寄主岩浆具有同系列的主微量元素组成和较一致的Sr-Nd-Pb同位素组成(Yangetal., 2012; Stamperetal., 2014; Priceetal., 2016)。其中,具有嵌晶结构的辉长岩包体通常为岩浆分离结晶形成的堆晶体(Arculus and Wills, 1980; Fodor and Moore, 1994; Costaetal., 2002; Stamperetal., 2014),它们具有较寄主岩浆更低的SiO2和更高的CaO含量,堆晶矿物也具有更基性的成分(例如,单斜辉石较高的Mg#值, 斜长石较高的An含量)(Stamperetal., 2014; Camejo-Harryetal., 2018; Cooperetal., 2019)。(中粗)粒状结构的辉长岩包体自形程度较高,矿物间呈包含火山玻璃的开放结构(Fodor and Moore, 1994; Costaetal., 2002; Cashmanetal., 2017),除辉长岩包体以外,寄主岩浆还携带大量辉长质的矿物聚晶(glomerocryst)与循环晶(antecryst),这些辉长质的物质通常为岩浆上升过程中捕获的岩浆房中的晶粥(Costaetal., 2002; Jerram and Martin, 2008; Cashman and Sparks, 2013; Edmondsetal., 2019; Lissenbergetal., 2019)。由此可见,安山岩及其携带的辉长岩包体的岩石学、矿物学、矿物化学和岩石地球化学特征为揭示安山岩的成因及深部演化过程提供了独特的信息。

受印度-欧亚大陆碰撞(65~60Ma; Wuetal., 2014; Huetal., 2015)及印度板块持续向北俯冲的影响,青藏高原东南缘的腾冲地区发育了大量的后碰撞高钾钙碱性火山岩,形成了近连续的玄武岩-玄武安山岩-粗面安山岩-英安岩系列(Zhouetal., 2012; Guoetal., 2015; Chengetal., 2020; Lietal., 2020)。目前,关于腾冲安山岩的成因仍具有较大的争议。岩石学与地球化学研究成果表明,腾冲安山岩主要为玄武质岩浆在地壳岩浆房经历分离结晶(FC)(樊祺诚等, 1999; 赵勇伟和樊祺诚, 2010)、地壳混染和分离结晶(AFC)(Zouetal., 2017; Duanetal., 2019; Chengetal., 2020)或岩浆混合(Gaoetal., 2015)等过程的产物。腾冲粗面安山岩中包含较丰富的岩石包体,它们的岩石学、矿物学及地球化学特征为揭示地壳深部岩浆房结构、探讨安山质岩浆的成因与演化过程提供了良好的契机。有学者对粗面安山岩中的辉长岩(直径<2.5cm)和麻粒岩(直径3~5cm)包体进行了较全面的岩石学与矿物学研究(于红梅等, 2010; 林木森等, 2014),但岩石地球化学研究工作还较少。众所周知,包体与寄主火山岩的主微量元素尤其是Sr-Nd-Pb同位素特征对限定包体的来源与深部岩浆过程具有重要意义。本次研究在腾冲粗面安山岩中同时发现了大量的辉长岩包体(直径2~13cm)与矿物聚晶(粒径2~5mm),首次对辉长岩包体与粗面安山岩开展了的全岩主微量元素和Sr-Nd-Pb同位素的对比研究,以及各类单斜辉石(辉长岩包体、聚晶和斑晶)原位微量元素特征的对比研究,结合矿物温压计算结果,试图限定腾冲安山质岩浆房的结构,进而探讨辉长岩包体与粗面安山岩的成因。

1 地质背景

腾冲地块位于青藏高原的东南缘,其东部以高黎贡韧性剪切带为界,西部止于密支那缝合带。在大地构造位置上,腾冲地块处于密支那与怒江缝合带之间,为青藏高原南部拉萨地块的东南延伸(Yin and Harrison, 2000; Searleetal., 2007; 戚学祥等, 2011; Qietal., 2019)(图1)。因处于印度-欧亚板块碰撞的最前缘,这里发育强烈的构造变形、广泛的岩浆活动和强烈的水热活动。腾冲地区的断裂主要为NS或NNE走向,包括西部的梁河断裂、中部的大盈江断裂和东部的固东-腾冲断裂等(皇甫岗和姜朝松,2000; 戚学祥等,2011)。区内出露的地层由老至新分别为:元古界高黎贡群变质岩,岩性主要为千枚岩、片岩与片麻岩,厚度大于1000m;石炭系勐洪群泥岩、板岩和白云岩,厚度约3500m;之后,地层缺失,直至古近系南林组陆相碎屑沉积不整合于元古界变质岩之上(陈廷方等,2003)。由于经历了中特提斯洋(怒江洋,Yin and Harrison, 2000; 莫宣学和潘桂棠,2006)与新特提斯洋(密支那洋,莫宣学和潘桂棠,2006)的闭合和块体之间的碰撞,腾冲地块内中、新生代爆发了燕山期和喜马拉雅期两次大规模的岩浆活动(杨启军等,2006;戚学祥等,2011)。新生代以来,区内以广泛发育高钾钙碱性火山活动为特征,在南北狭长的盆地中形成了70多座火山,熔岩出露面积达790km2(姜朝松,1998;樊祺诚等,1999)。腾冲地区水热活动(喷沸泉、沸泉和温泉等)强烈,地震活动频繁(佟伟和章铭陶,1989;上官志冠等,2004;成智慧等,2012,2014; Zhangetal., 2016)。

图1 腾冲火山区后碰撞高钾钙碱性火山岩分布图(据Mo et al., 2006; Guo et al., 2015; Cheng et al., 2020修改)五角星代表粗面安山岩及辉长岩包体的采样位置Fig.1 Simplified geological map showing the distribution of the post-collisional high-K calc-alkaline (HKCA) magmatic rocks in the Tengchong volcanic field (modified after Mo et al., 2006, Guo et al., 2015; Cheng et al., 2020)The star denotes sampling location of trachyandesites with gabbroic xenoliths

腾冲后碰撞火山活动始于上新世(8Ma至今),形成了一系列的高钾钙碱性火山岩(Zhuetal., 1983; 皇甫岗和姜朝松, 2000; 李大明等, 2000; Zhouetal., 2012; Guoetal., 2015),最近的一次火山活动发生于公元1609年(徐弘祖, 1639)。根据火山岩的年代学、岩石学及地球化学特征,腾冲火山活动可被划分为四个期次:上新世(8~3Ma)玄武岩-粗面玄武岩-玄武质粗面安山岩系列,早更新世(2.7~0.8Ma)粗面安山岩-英安岩系列,晚更新世(0.8~0.2Ma)玄武岩-粗面玄武岩系列和全新世(<0.2Ma)粗面玄武岩-粗面安山岩系列(Chengetal., 2020)。关于原始玄武质岩浆成因的研究较为成熟,认为其形成于富集地幔的低程度部分熔融,地幔富集过程可能受到了新特提斯洋壳(从柏林等, 1994; Tianetal., 2018; Duanetal., 2019)、俯冲的印度陆壳(Zouetal., 2014; Guoetal., 2015; Xuetal., 2018b; Chengetal., 2020)或俯冲的印度大洋岩石圈(90°E海岭)(Zhouetal., 2012; Liuetal., 2018)的影响。关于中酸性岩浆成因的研究较少,认为其为玄武质岩浆上升至地表的过程中经历分离结晶(樊祺诚等, 1999; 赵勇伟和樊祺诚, 2010)、地壳混染和分离结晶(AFC)(Zouetal., 2017; Duanetal., 2019; Chengetal., 2020)或岩浆混合(Gaoetal., 2015)等过程的产物。地震与地球物理资料显示,腾冲地壳厚度约38~42km(周真恒等, 2001; 王椿镛等, 2002; 张龙等, 2015; Xuetal., 2018a),在地壳不同深度(9~30km)存在多个部分熔融体,可能为壳内岩浆房(秦嘉政等, 2000; Baietal., 2001; 姜枚等, 2012; 谭捍东等, 2013; Xuetal., 2018b; Huaetal., 2019)。

2 岩相学特征

所有的样品均采自黑空山火山以北5km出露面积约500m2的露天采石场(25°16′N、98°30′E)(图1、图2)。共采集了6件粗面安山岩与12件包含辉长岩包体的粗面安山岩样品,其中,包含辉长岩包体的火山岩样品均采自该采石场北部厚度约3.5m的熔岩流剖面(图2a)。

图2 辉长岩包体与寄主火山岩野外照片(a、b)辉长岩包体野外出露点,厚度约3.5m的安山质熔岩流;(c)包含辉长岩包体的粗面安山岩;(d)粗面安山岩中发育大量白色的矿物聚晶;(e、f)分别为I类和II类辉长岩包体,两类包体与火山岩均具有清晰的接触线Fig.2 Macroscopic overview of representative gabbroic xenoliths entrained by the trachyandesites in the Tengchong volcanic field(a, b) trachyandesite lava flow with 3.5m thick which entrains gabbroic xenoliths; (c) trachyandesites which entrain gabbroic xenoliths; (d) trachyandesites with plenty of glomerocrysts; (e, f) gabbroic xenoliths of Type I and Type II, respectively, displaying clear boundary with trachyandesites

火山岩样品新鲜,气孔状构造,斑状结构(图2d)。斑晶以斜长石(5%~10%)和单斜辉石(5%~8%)为主,含少量斜方辉石(3%~5%)(图3g)。斜长石呈自形-半自形板状,韵律结构发育,少数核部发育筛状结构(图3g)。单斜辉石与斜方辉石为自形-半自形粒状结构,简单双晶发育,少量发育环带结构(图3g)。粗面安山岩中发育大量的矿物聚晶(15% ~20%),粒径2~5mm,主要由自形-半自形的斜长石(40%~60%)、单斜辉石(20%~30%)和斜方辉石(5%~10%)构成,含少量Fe-Ti氧化物(<5%)(图3g)。斜长石颗粒之间呈较高的角度接触并构成格架,单斜辉石与斜方辉石颗粒充填其中,在聚晶矿物间隙贯入少量的玻璃质与气孔(图3h)。

辉长岩包体野外呈灰白色,直径2~12cm,包体新鲜,呈等粒状或椭圆状(图2e, f)。包体与寄主粗面安山岩具有较清晰的界限(图2e, f、图3a, b)。根据矿物组成与结构特征,辉长岩包体分为两类:I类辉长苏长岩(样品数,3个)(图2e、图3a)和II类辉长岩(样品数,9个)(图2f、图3b)。I类辉长岩包体粒径较小(直径2~4cm),主要的矿物组成为斜长石(50%~60%)+单斜辉石(20%~30%)+斜方辉石(5%~10%)+Fe-Ti氧化物(<5%)(图3c, e)。其中,斜长石呈半自形粒状(0.5~5mm)结构,复合双晶发育;单斜辉石与斜方辉石呈半自形粒状(0.2~2mm)结构;矿物间隙贯入少量的玻璃质(图3c, e)。II类辉长岩包体较大(直径2~12cm),主要的矿物组成为斜长石(40%~50%)+ 单斜辉石(30%~40%)+ Fe-Ti氧化物(5%~10%)(图3d, f)。其中,斜长石呈自形至半自形板状,粒径2~3mm,少数边部发育海绵结构;单斜辉石为半自形至他形粒状结构,粒径1~3mm;斜长石与单斜辉石矿物间隙贯入玻璃质,同时发育少量微晶斜方辉石(粒径≤50μm)(图3d, f)。

图3 辉长岩包体和矿物聚晶的显微结构与背散射图像照片(a)I类辉长岩包体,粒状结构,与粗面安山岩平整接触,无反应边结构(单偏光下);(b)II类辉长岩包体,粒状结构,与粗面安山岩平整接触(正交偏光下);(c)和(e)I类辉长岩包体正交偏光镜下照片与BSE图像,主要矿物组成为斜长石、单斜辉石与斜方辉石,含少量Fe-Ti氧化物,矿物间贯入玻璃质;(d)和(f)II类辉长岩包体正交偏光镜下照片与BSE图像,主要由斜长石与单斜辉石组成,含少量Fe-Ti 氧化物,矿物间充填少量玻璃质;(g)和(h)矿物聚晶单偏光镜下照片与BSE图像,斜长石、单斜辉石与斜方辉石构成开放结构,矿物间贯入熔体. 矿物缩写:Ap-磷灰石;Pl-斜长石;Cpx-单斜辉石;Opx-斜方辉石;Fe-Ti-Fe-Ti 氧化物Fig.3 Representative microphotographs of gabbroic xenoliths and glomerocrysts in trachyandesites(a) Type I gabbroic xenoliths with granular texture, which display clear boundary with trachyandesites; (b) Type II gabbroic xenoliths with granular texture, which display clear boundary with trachyandesites; (c) and (e) Type I gabbroic xenoliths composed of plagioclase (Pl), clinopyroxene (Cpx) and orthopyroxene (Opx) with interstitial glass; (d) and (f) Type II gabbroic xenolith which is composed of Pl and Cpx with interstitial orthopyroxene and glass; (g) and (h) glomerocrysts composed of Pl, Cpx and Opx with open structure. Mineral abbreviations: Ap-apatite; Fe-Ti-Fe-Ti oxide

3 分析方法

本次研究对粗面安山岩和辉长岩包体开展了全岩主微量元素和Sr-Nd-Pb同位素分析,并对包含辉长岩包体的粗面安山岩进行了K-Ar定年工作。同时,详细的测试了辉长岩、矿物聚晶和粗面安山岩斑晶矿物(斜长石、单斜辉石与斜方辉石)的主量元素组成与单斜辉石的原位微区微量元素组成。

利用薄片切割法将辉长岩包体与粗面安山岩分离,分别粉碎至200目,用于全岩地球化学成分测试工作。全岩主微量元素和Sr-Nd-Pb同位素测试均在中国科学院地质与地球物理研究所完成。全岩主量元素成分采用X-射线荧光光谱仪XRF-1500测试,分析精度为~1%(含量>10%)和~5%(含量<1.0%)。全岩微量元素分析利用Finnigan Element型ICP-MS(电感耦合等离子体质谱仪)完成,精度优于10%。Rb-Sr和Sm-Nd同位素比值测试采用同位素稀释法完成,测量仪器为德国Finnigan公司MAT-262型热电离质谱计。分别采用146Nd/144Nd=0.7219和86Sr/88Sr=0.1194对Nd 和Sr同位素比值进行质量分馏校正。详细测试方法参见Guoetal. (2006)。Pb同位素分析利用德国Finnigan公司MAT-262型热电离质谱仪完成,分析精度优于0.005%,利用标样NBS981进行校正,详细的测试方法参见Wangetal. (2018)。将包含辉长岩包体的粗面安山岩粉碎至40~60目,利用重选、磁选等选矿方法初步将基质与斑晶分离,然后在显微镜下将单晶矿物尤其是斜长石从基质中分离,挑选基质3~5g,利用K-Ar法对粗面安山岩开展定年工作,该项测试在中国地震局地质研究所利用高精度MM-1200质谱完成,详细的测试方法参见Aslanetal. (2014)。

矿物的主量元素分析在中国科学院地质与地球物理研究所电子探针实验室利用JXA8100电子探针完成,加速电压为15kV,电子束电流10nA,束斑直径3μm。单斜辉石原位微量元素分析在中国科学院地质与地球物理研究所利用LA-ICP-MS完成,采用的激光剥蚀孔径为40μm,激光脉冲为10Hz,数据处理过程中选择Ca作为内标元素,国际标样NIST610用于外标校正。详细的分析方法和流程同杨岳衡等(2009)。

4 分析结果

4.1 K-Ar 定年结果

基质K-Ar定年结果显示,粗面安山质岩浆喷发于晚更新世(0.29~0.38Ma)(表1),属于腾冲新生代火山区第三期岩浆活动(0.8~0.2Ma; Chengetal., 2020)。本期岩浆活动主要分布于腾冲火山区的中部及中北部地区,形成了以玄武岩-玄武质安山岩-粗面安山岩为主的火山岩系列(图1)。

表1 粗面安山岩基质K-Ar定年结果

4.2 全岩地球化学特征

寄主火山岩与II类辉长岩包体全岩的主量、微量元素和Sr-Nd-Pb同位素成分见表2。寄主火山岩具有较高的SiO2(58.28%~59.29%),Al2O3(16.54%~17.20%),Fe2O3(5.91% ~6.44%),CaO (5.48%~5.84%) 和MgO(3.33%~3.87%)含量(表2、图4)。它们具有较高的总碱(Na2O + K2O)(6.63%~7.02%)含量(表2),根据火山岩TAS分类图将其定名为粗面安山岩。这些火山岩具有较高的K2O(3.22%~3.44%)含量,属于高钾钙碱性系列(表2、图4)。II类辉长岩包体具有较低的SiO2(50.41%~51.55%)含量,较高的Al2O3(18.45%~20.26%),Fe2O3(6.39%~9.53%),CaO(10.59%~10.64%)和MgO(6.22%~6.86%)含量(表2)。在主量元素(SiO2、CaO、Al2O3和FeO)与MgO的相关图解中(图4),II类辉长岩包体均落在腾冲近连续的玄武岩-玄武安山岩-粗面安山岩-英安岩的演化序列内。

表2 粗面安山岩与辉长岩包体全岩主量(wt%)、微量元素(×10-6)和Sr-Nd-Pb同位素组成

图4 腾冲后碰撞高钾钙碱性火山岩与II类辉长岩包体哈克图解实心与空心数据点分别代表本文与前人发表的数据. 前人数据来源:樊祺诚等, 1999; 赵勇伟和樊祺诚, 2010; Li et al., 2012; Zhang et al., 2012; Zhou et al., 2012; Guo et al., 2015; Tian et al., 2018; Cheng et al., 2020. 图5、图6数据来源同此图Fig.4 Harker diagrams for the post-collisional HKCA magmas and Type II gabbroic xenoliths in the Tengchong volcanic fieldFilled and open symbols represent data from this study and previous publications, respectively. Sources of published data: Fan et al., 1999; Zhao and Fan, 2010; Li et al., 2012; Zhang et al., 2012; Zhou et al., 2012; Guo et al., 2015; Tian et al., 2018; Cheng et al., 2020. Sources of published data in Fig.5 and Fig.6 are the same as in this figure

全岩微量元素测试结果显示,粗面安山岩具有较高的稀土元素含量(∑REE=345×10-6~426×10-6)。在球粒陨石标准化稀土元素配分图中(图5a),粗面安山岩具有右倾的配分曲线((La/Yb)N=21~23)与较强的负铕异常(δEu=0.63~0.65;δEu=2×EuN/(SmN+ GdN)),与前人报道的腾冲粗面安山岩稀土元素配分型式一致。II类辉长岩包体稀土元素总量较低(∑REE=100×10-6~120×10-6),它们也呈现右倾的稀土配分曲线((La/Yb)N=11~16),但铕呈较弱的正异常(δEu=1.01~1.29)(图5a)。在原始地幔标准化微量元素蛛网图中(图5b),粗面安山岩具有较高的微量元素含量,相对于高场强元素,它们富集大离子亲石元素(例如,Rb、Ba和K等),同时具有Nb-Ta-Ti的负异常与Pb的正异常(图5b)。II类辉长岩包体与粗面安山岩具有相似的微量元素配分曲线,即富集大离子亲石元素,亏损高场强元素,同时具有Nb-Ta-Ti 的负异常与Pb的正异常(图5b)。与粗面安山岩相比,II类辉长岩的微量元素总量较低,同时具有更显著的Nb-Ta负异常(图5b)。

图5 粗面安山岩与II类辉长岩包体全岩的球粒陨石标准化稀土配分图(a)和原始地幔标准化的微量元素蛛网图(b)(标准化值据Sun and McDonough, 1989)Fig.5 Chondrite-normalized rare earth element diagrams (a) and primitive mantle-normalized trace element patterns (b) for the trachyandesitic magmas and the entrained gabbroic xenoliths (normalization values from Sun and McDonough, 1989)

同位素测试结果显示,粗面安山岩具有较高87Sr/86Sr(0.7084~0.7085)与较低的143Nd/144Nd(0.51217~0.51220)同位素比值,较高的206Pb/204Pb(18.02~18.07)、207Pb/204Pb(15.66~15.69)与208Pb/204Pb(39.11~39.20)同位素比值(表2、图6)。与前人已发表的腾冲第三期玄武岩-粗面安山岩-安山岩成分对比,这些粗面安山岩具有较高的87Sr/86Sr与较低的143Nd/144Nd同位素比值(图6b)。II类辉长岩包体与粗面安山岩具有较一致的Sr-Nd-Pb同位素组成,即较高的87Sr/86Sr(0.7068~0.7079)比值与较低的143Nd/144Nd(0.51217~0.51223)比值,较高的206Pb/204Pb(18.00~18.09)、207Pb/204Pb(15.65~15.67)与208Pb/204Pb(39.09~39.11)比值(表2、图6)。

图6 腾冲后碰撞高钾钙碱性火山岩与辉长岩包体Sr-Nd-Pb 同位素相关图解(a)辉长岩包体与粗面安山岩(143Nd/144Nd)i-(87Sr/86Sr)i相关图;(b)放大版的图a;(c)(207Pb/204Pb)i-(206Pb/204Pb)i相关图;(d)(208Pb/204Pb)i-(206Pb/204Pb)i相关图. 腾冲地区花岗岩与片麻岩成分据Chen et al. (2002)和杨启军等(2009); 藏南上地壳与下地壳成分据Miller et al. (1999); MORB(Workman and Hart, 2005)、EMI(Hofmann, 1997)、EMII(Hofmann, 1997)和东印度大陆边缘沉积物(EIS; 潘桂棠等, 2004; Najman, 2006)成分范围以箭头或轮廓线显示Fig.6 Sr-Nd-Pb isotopic compositions for the post-collisional HKCA magmas and Type II gabbroic xenoliths in the Tengchong volcanic field(a) (143Nd/144Nd)i vs. (87Sr/86Sr)i of Type II gabbroic xenoliths and trachyandesitic magmas; (b) Enlargement of (143Nd/144Nd)i vs. (87Sr/86Sr)i in Fig.6a; (c) (207Pb/204Pb)i vs. (206Pb/204Pb)i; (d) (208Pb/204Pb)i vs. (206Pb/204Pb). Data of granites and gneisses in the Tengchong terrane from Chen et al. (2002) and Yang et al. (2009). Lower (LC) and upper (UC) continental crust of southern Tibet from Miller et al. (1999). The compositions of DMM (Workman and Hart, 2005), EMI (Hofmann, 1997), EMII (Hofmann, 1997) and eastern Indian continental margin sediments (EIS) (Pan et al., 2004; Najman, 2006 and references therein) are also shown as arrows or outline fields

4.3 矿物地球化学特征

4.3.1 矿物主量元素特征

图7 斑晶、聚晶及辉长岩包体中斜长石(a)与辉石(b)分类定名图Fig.7 Denomination of plagioclase on the ternary feldspar diagram (a) and denomination of clinopyroxene and orthopyroxene based on the enstatite-ferrosilite-dedenbergite quadrilateral (b) from phenocrysts, glomerocrysts and gabbroic xenoliths

图8 斜长石An含量与Kd(a)和单斜辉石Mg#值与Kd(b)相关图解Fig.8 Diagrams of Kd vs. An contents of plagioclase (a) and Kd vs. Mg# of clinopyroxene (b)

表3 粗面安山岩斑晶矿物核部主量元素组成(wt%)

聚晶斜长石、单斜辉石与斜方辉石具有较均一的化学成分(表4、图7)。斜长石以拉长石(An58-64)为主,与熔体Na-Ca交换平衡(Kd=0.17~0.22)(表4、图8a)。单斜辉石为普通辉石(En45-49Wo39-42Fs11-13),具有较高的Mg#(78~82)值(表4、图7b)。Fe-Mg交换平衡计算结果显示,这些单斜辉石与全岩(Kd=0.23~0.29)平衡(图8b)。斜方辉石以斜顽辉石(En75-80Wo3-4Fs16-21)为主,具有较高的Mg#(78~83)值(表4),它们与全岩Fe-Mg交换平衡(Kd=0.26~0.37)。整体而言,聚晶矿物成分与斑晶相似,均与寄主火山岩平衡。

表4 聚晶矿物核部的主量元素组成(wt%)

辉长岩包体主要矿物的代表性成分见表5。包体斜长石成分与斑晶斜长石较一致,其中,I类辉长岩包体斜长石为拉长石(An57-64),具有较高的SiO2(52.53%~54.45%)、CaO(11.43% ~12.71%)和Al2O3(28.92%~30.44%)含量(表5、图7a);II类辉长岩包体斜长石也以拉长石(An54-61)为主,少量发育海绵结构的斜长石An(44~51)值较低,但FeO与MgO含量无明显的变化,可能形成于斜长石的降压分解。辉长岩包体中单斜辉石成分具有较大的差异(表5、图7b):I类辉长岩包体中的单斜辉石 (En41-46Wo41-45Fs13-14) 与斑晶单斜辉石成分相似,具有较高的Mg#(77~79)值,较高的CaO(11.42%~12.69%)和FeO(7.51%~8.24%)含量(表5、图7b);II类辉长岩包体单斜辉石也为普通辉石(En40-47Wo41-46Fs14-17),但Mg#(71~76)值较低,CaO(19.62%~21.68%)和FeO(8.22%~10.29%)含量较高(表5、图7b)。斜方辉石主要发育于I类辉长岩包体中,成分与斑晶斜方辉石较一致,以斜顽辉石(En74-79Wo3-4Fs13-14)为主并具有较高的Mg#(76~82)值(表5、图7b)。II类辉长岩包体中仅发育少量微晶斜方辉石,它们具有较低的Mg#值(64~70)和较高的FeO(18.42%~22.01%)含量(表5),其成分与粗面安山岩基质中的斜方辉石微晶(Mg#=67~72; FeO=16.56%~28.03%)较一致,可能为寄主岩浆晚期快速冷却结晶的产物。矿物与熔体交换平衡计算结果表明:I类辉长岩包体中的斜长石、单斜辉石和斜方辉石均与寄主岩浆(Mg#=0.61)平衡(图8);II类辉长岩斜长石An值较低,单斜辉石的Mg#值也较低,可能结晶自演化程度更高的岩浆。以该地区演化程度较高的粗面安山岩全岩(TC1311: Mg#=0.56)代表熔体,II类辉长岩包体中的斜长石与单斜辉石的成分与之平衡(图8)。

表5 辉长岩包体矿物核部的主量元素组成(wt%)

4.3.2 单斜辉石微量元素特征

单斜辉石原位微区微量元素测试结果表明,不同岩石类型(包括I类辉长岩、II类辉长岩、聚晶和斑晶)中单斜辉石具有相似的微量元素分布型式(表6、图9)。在球粒陨石标准化稀土元素配分图中(图9a),单斜辉石均具有右倾的稀土配分型式,即相对富集轻稀土元素、亏损重稀土元素,同时具有微弱的负铕异常。其中,I类辉长岩包体、聚晶与斑晶单斜辉石具有相似稀土配分型式;II类辉长岩包体的单斜辉石具有更高的轻稀土元素含量和更强烈的负铕异常(图9a)。在原始地幔标准化微量元素蛛网图中(图9b),单斜辉石具有相似的微量元素配分型式:相对于原始地幔,它们更富集微量元素,同时具有Th、Sr和Ti 的负异常;I类辉长岩包体、聚晶与斑晶单斜辉石的微量元素配分型式较相似,II类辉长岩单斜辉石具有更高的微量元素含量(图9b)。

表6 斑晶、矿物聚晶与辉长岩包体中单斜辉石原位微区微量元素(×10-6)组成

图9 斑晶、聚晶与辉长岩包体单斜辉石的球粒陨石标准化稀土配分图(a)及原始地幔标准化微量元素蛛网图(b)(标准化值据Sun and McDonough, 1989)Fig.9 Chondrite-normalized rare earth element diagrams (a) and primitive mantle-normalized trace element patterns (b) for clinopyroxene from phenocrysts, glomerocrysts and gabbroic xenoliths (normalization values from Sun and McDonough, 1989)

5 讨论

5.1 矿物聚晶的来源

腾冲后碰撞高钾钙碱性岩浆作用形成了近连续的玄武岩-玄武安山岩-粗面安山岩-英安岩系列(图4)。岩石学、矿物学、矿物温压计算与EC-AFC模拟结果显示,粗面安山岩为玄武质岩浆在中下地壳岩浆房经历地壳混染与分离结晶(AFC)的产物(Chengetal., 2020)。近年来,大量的岩石学、地球化学、数值模拟和地球物理学研究结果均表明,地壳岩浆房系统由相互连接的以熔体为主的区域和以晶体为主的晶粥区域构成(Nakagawaetal., 1999; Cashmanetal., 2017; Jacksonetal., 2018; Luoetal., 2018; Bennettetal., 2019; Edmondsetal., 2019; Caraccioloetal., 2020)。由于温度较低、晶体含量较高和粘度较高,晶粥不能直接喷出地表,但可以被快速上升的岩浆分解并以单个晶体、聚晶(glomerocryst)、堆晶团块(cumulate nodules)或包体的方式带至地表(Nakagawaetal., 1999; Cashmanetal., 2017; Bennettetal., 2019)。

本研究报道的粗面安山岩斑晶含量较高,同时包含大量的矿物聚晶和辉长岩包体(图2、图3)。这些矿物聚晶具有如下特点:(1)具有自形-半自形中粗粒结构,晶形完整,无折断或变形迹象;(2)与粗面安山岩斑晶矿物组成相同,主要由斜长石、单斜辉石与斜方辉石构成;(3)聚晶矿物之间(尤其是斜长石)呈高角度接触的开放结构;(4)矿物间充填大量的基质玻璃或气孔。火山岩中类似的聚晶结构通常是岩浆捕获的岩浆房的半固结部分,代表岩浆喷发前形成的晶粥(Crystal mush)(Nakagawaetal., 1999; Holnessetal., 2005; Cashmanetal., 2017; Edmondetal., 2019; Lissenbergetal., 2019)。例如,东太平洋海隆(Pan and Batiza, 2003; Mooreetal., 2014)与北冰洋加克利(Bennettetal., 2019)火山岩中的矿物聚晶均为熔体捕获的岩浆房内部晶粥的碎片。这些聚晶矿物的成分可能与寄主熔体平衡或不平衡,分别代表寄主熔体或早期熔体形成的晶粥(Pan and Baitza, 2003; Mooreetal., 2013, 2014)。本研究中,聚晶矿物(包括拉长石、普通辉石和斜顽辉石)与寄主粗面安山岩斑晶具有一致的主量元素组成(图7、图8),它们均与粗面安山岩的全岩成分平衡(图8)。同时,聚晶单斜辉石与斑晶具有相似的稀土和微量元素组成(图9)。矿物组成与矿物化学成分上的相似性暗示这些聚晶矿物为寄主粗面安山质岩浆结晶作用形成的晶粥。

5.2 辉长岩包体的成因

辉长岩包体样品新鲜,与寄主火山岩接触清晰,无熔蚀、烘烤、冷凝等反应结构(图2)。包体具有自形-半自形粒状结构,主要由拉长石、普通辉石与斜顽辉石组成,矿物晶形完整且未发生明显的变形(图3)。前人在腾冲晚更新世粗面安山岩中发现了一些长英质麻粒岩和二辉质麻粒岩包体,它们具有粒状变晶结构并以包含紫苏辉石为特征(林木森等,2014)。本研究发现的辉长岩包体的结构、矿物组成和化学成分均与前人报道的麻粒岩包体具有较大的差异,因此,排除这些辉长岩包体为岩浆上升过程中捕获的地壳组分。

I类辉长岩包体的结构、矿物组成特征和化学成分均与矿物聚晶具有较大的相似性(图3)。例如,I类辉长岩包体也主要由自形-半自形的拉长石、普通辉石和斜顽辉石组成,并且矿物间呈高角度接触,间隙还充填少量的基质玻璃与气孔(图3);I类辉长岩包体中的斜长石、单斜辉石及斜方辉石与聚晶矿物具有一致的主量元素组成,它们均与粗面安山岩达到了成分上的平衡(图8);尤为重要的是,I类辉长岩包体的单斜辉石与聚晶单斜辉石呈现较一致的稀土和微量元素分配型式(图5、表5)。基于以上岩石结构、矿物组成与矿物化学成分上的相似性,我们认为I类辉长岩包体与矿物聚晶相同,为岩浆喷发前形成晶粥的“碎片”。与矿物聚晶相比,I类辉长岩包体粒径较大,矿物间紧密程度较高,玻璃基质含量较低,它们可能代表岩浆房晶体含量更高的晶粥。

与I类辉长岩包体和矿物聚晶相比,II类辉长岩包体在岩石结构与矿物组成上均具有差异,主要表现为II类辉长岩包体的矿物间接触更为紧密,矿物间仅发现少量的玻璃基质及斜方辉石微晶(图3)。为了更好的限定II类辉长岩包体的成因,我们对比研究了辉长岩包体与寄主粗面安山岩全岩的主微量元素与同位素地球化学特征(图4、图5、图6)。在全岩主量元素(SiO2、CaO、 FeO和K2O)和微量元素(Sr和Ba)与MgO含量的相关图解中(图4),II类辉长岩包体的成分均落在腾冲玄武岩-玄武安山岩-粗面安山岩-英安岩的演化序列中。全岩微量元素测试结果显示,II类辉长岩包体与寄主粗面安山岩具有相似的稀土元素与微量元素配分型式(图5)。尤为重要的是,辉长岩包体与寄主粗面安山岩具有一致的Sr-Nd-Pb同位素组成(图6)。这些地球化学特征表明II类辉长岩包体与寄主粗面安山质岩浆是同源的,它们均来自腾冲地壳安山质岩浆房。II类辉长岩包体与斑晶单斜辉石矿物相似的微量元素组成进一步证实了这些辉长岩包体与寄主粗面安山岩的同源性(图9)。手标本与显微镜下观察结果均显示辉长岩包体具有粒状结构,未见明显的矿物分带与定向分布;同时,单斜辉石Mg#值较低, 斜长石An含量较低,全岩成分也未表现出异常高的CaO含量。因而我们推断,II类辉长岩包体未经历显著的堆晶过程,是岩浆房结晶作用的产物。II类辉长岩包体与矿物聚晶和I类辉长岩包体同时被粗面安山质岩浆携带至地表,并且II辉长岩包体的矿物间也发现了少量的基质玻璃(图2),我们认为II类辉长岩包体的来源与矿物聚晶及I类辉长岩包体相似,也为岩浆房中晶体含量较高的晶粥。与I类辉长岩相比,II类辉长岩包体矿物间紧密程度较高,可能代表岩浆房较早期形成的经过部分压实的晶粥(Bennettetal., 2019)。II类辉长岩包体单斜辉石Mg#值较低,斜长石An含量也较低(图8),指示其结晶于演化程度较高的岩浆(Stamperetal., 2014),这也解释了II类辉长岩包体单斜辉石更高的微量元素含量与更强烈的轻重稀土元素分异(图5)。

5.3 矿物平衡温度与压力估算

5.3.1 单斜辉石-熔体温压计

大量的实验岩石学研究结果表明,单斜辉石硬玉成分(NaAlSi2O6)的含量对压力较敏感,因而可以较好的限定单斜辉石结晶的压力条件(Putirkaetal., 2003; Armientietal., 2007; Putirka, 2008; Molloetal., 2013; Giacomonietal., 2016; Neave and Putirka, 2017; Ubide and Kamber, 2018)。单斜辉石在粗面安山岩与辉长岩包体中均较好的发育(图3),为我们限定其形成的温度和压力条件提供了良好的基础。Neave and Putirka (2017)提出的单斜辉石-熔体温压计很好地提高了压力估算的精度(±1.4kbar, 1σ),本研究利用该方法对单斜辉石结晶条件进行了估算。温度与压力估算时首先需判断单斜辉石与熔体是否平衡,其次还需对熔体的水含量进行估算。早期多利用单斜辉石与熔体间Fe-Mg交换系数(Kd=0.28±0.08)判断二者是否平衡,近年来大量的研究结果表明,该交换系数并非常数,而是与熔体的成分、温度和氧逸度等条件有关(Putirka, 2008; Neave and Putirka, 2017)。Molloetal. (2013)提出根据回归分析的方法获得与熔体平衡的单斜辉石成分,再将该成分与实际测出的单斜辉石成分进行对比,可以更好地判断单斜辉石与熔体是否平衡。该方法近年来得到了较广泛的应用(Haddadietal., 2017; Neave and Putirka, 2017; Eskandarietal., 2018; Ubideetal., 2019; Dietal., 2020)。因此,在Fe-Mg交换平衡计算的基础上,我们进一步利用该方法验证单斜辉石与熔体的平衡(图8b、图10a)。虽然II类辉长岩包体与寄主火山岩成分不平衡,但以研究区Mg#值较低的粗面安山岩(TC1311)全岩代表熔体,II类辉长岩包体中的单斜辉石成分与之达到平衡(图8b),因此我们以该全岩成分代表II类辉长岩包体的熔体。根据Waters and Lange (2015)提出的斜长石-熔体湿度计,初步估算粗面安山质岩浆的水含量为2.5~3.0±0.4%。

图10 单斜辉石-熔体间平衡判断(a,据Mollo et al., 2013)以及聚晶、辉长岩包体与粗面安山岩单斜辉石-熔体(Neave and Putirka, 2017)和单斜辉石-斜方辉石(Putirka, 2008)温压计算结果(b)Fig.10 Equilibrium testing of clinopyroxene based on a comparison of observed and predicted diopside-hedenbergite (DiHd) components (a, based on Mollo et al., 2013) and P-T calculation results of the clinopyroxene-liquid thermobarometer (Neave and Putirka, 2017) and the clinopyroxene-orthopyroxene (Putirka, 2008) for glomerocrysts, gabbroic xenoliths and trachyandesites (b)

选取与熔体成分平衡的单斜辉石进行温度与压力计算。结果显示,单斜辉石斑晶的结晶温度为1088~1137±25℃,压力为5.3~9.2±1.4kbar(深度20~31km)(图10b),与前人单斜辉石斑晶的温压计算结果较一致(Huetal., 2018; Chengetal., 2020)。聚晶单斜辉石的结晶温度(1083~1106±25℃)与压力(4.1~6.3±1.4kbar;17~23km)略低于单斜辉石斑晶(图10b)。I类辉长岩包体单斜辉石的结晶温度(1098~1110±25℃)与聚晶单斜辉石较一致,但结晶压力(5.4~6.7±1.4kbar;21~25km)略高(图10b)。与I类辉长岩包体及矿物聚晶对比,II类辉长岩包体的结晶压力(4.8~6.9±1.4kbar;深度18~25km)与前者一致,但结晶温度(1046~1082±25℃)略低(图10b)。整体而言,两类辉长岩包体与聚晶矿物的结晶温度与压力条件均低于火山岩斑晶(图10b)。

5.3.2 单斜辉石-斜方辉石温压计

单斜辉石-斜方辉石温压计也可以较好的估算矿物结晶的温度和压力条件(Brey and Köhler, 1990; Putirka, 2008)。显微镜下观察结果表明,I类辉长岩包体与矿物聚晶的单斜辉石与斜方辉石较自形,无环带或变形现象,二者在结构上平衡。电子探针分析结果显示,同一单斜辉石或斜方辉石颗粒的不同部位成分差异很小。Fe-Mg交换平衡计算结果(KdFe-Mg=0.94~1.22; 1.09±0.16, Putirka, 2008)也证实单斜辉石与斜方辉石成分上平衡。因此,单斜辉石-斜方辉石温压计可以为I类辉长岩包体和矿物聚晶提供较可靠的温压条件的限定。计算结果显示,聚晶矿物结晶的温度(997~1041±50℃)与压力(3.0~5.1±2.8kbar)条件略低于I类辉长包体(1024~1045±50℃; 4.0~4.4±2.8kbar)。利用单斜辉石-斜方辉石矿物对获得的结晶压力与单斜辉石-熔体压力结果较一致,但温度略低(图9b)。考虑到二辉石温度计较大的误差范围(±50℃;Putirka, 2008),我们认为两种方法计算的温度结果基本一致。

5.4 岩浆房系统与深部岩浆过程

腾冲新生代火山区上新世以来发育近连续的玄武岩-玄武安山岩-粗面安山质-英安岩系列(图4)。岩石学、矿物学、温压估算与EC-AFC模拟结果均显示,腾冲上地壳(9~14km)与中下地壳(13~28km)均存在岩浆房(Chengetal., 2020),这与该地区大地电磁低阻异常(12~30km;姜枚等,2012;谭捍东等,2013)与地震S波低速异常(9~16km;Xuetal., 2018b)特征指示的岩浆房分布相吻合。腾冲粗面安山质岩浆为玄武质岩浆在中下地壳岩浆房(13~28km)经历分离结晶与地壳混染(AFC)过程的产物(Chengetal., 2020)。本研究中,寄主粗面安山岩斑晶的压力计算结果(5.3~9.2±1.4kbar;深度20~31km)也显示单斜辉石斑晶来自腾冲深部地壳岩浆房(图10b、图11)。这些粗面安山岩包含大量的辉长岩包体与矿物聚晶,岩石学、矿物学、矿物化学和全岩地球化学特征均表明,它们均来自粗面安山质岩浆房(图3-图6、图10)。矿物聚晶与辉长岩包体均发育粒状结构,矿物间呈高角度接触并贯入基质玻璃,呈现典型的“开放”的结构特征(图3)。与东太平洋海隆(Pan and Batiza, 2003; Mooreetal., 2014)、北冰洋加克利(Bennettetal., 2019)和新西兰鲁阿佩胡(Nakagawaetal., 1999, 2002)火山岩中包含的矿物聚晶与辉长岩包体相似,它们可能代表岩浆房中上部以晶体为主的晶粥(图11)。矿物聚晶和I类辉长岩包体与粗面安山岩的斑晶呈现较一致的矿物组成和化学成分,矿物间贯入较高的基质玻璃,指示它们可能代表寄主粗面安山质岩浆形成的晶粥,这些晶粥未经历明显的压实作用。II类辉长岩包体矿物具有演化的成分(单斜辉石较低的Mg#值和斜长石较低的An含量)和具有较低的结晶温度,它们可能代表演化程度更高的粗面安山质岩浆形成的晶粥,可能形成于岩浆房系统更靠近围岩的部位(图11)。II类辉长岩包体更紧密的岩石结构指示它们可能经历了部分压实作用(图11)。矿物聚晶与辉长岩包体的形成深度(17~25km)均处于腾冲地壳深部岩浆房的中上部(图11)。在岩浆房中上部,斜长石等密度较小的矿物易于聚集,这与矿物聚晶和辉长岩包体中斜长石含量较高一致(图3)。同时,岩浆房中上部挥发分或气相组分的存在也利于矿物聚晶的形成(Cashmanetal., 2017),这也与粗面安山岩大量发育的气孔构造一致(图2d、图3g)。粗面安山质岩浆快速上升并喷出地表的过程中将位于岩浆房中上部的晶粥破碎,并以辉长岩包体与聚晶的形式携带至地表(Nakagawaetal., 1999, 2002; Yangetal., 2012; Priceetal., 2017; Cashmanetal., 2017; Maclennan, 2019; Edmondsetal., 2019; Caraccioloetal., 2020),这也解释了腾冲晚更新世粗面安山岩中同时包含了大量的矿物聚晶与辉长岩包体(图2c-f)。腾冲粗面安山岩中单斜辉石与斜方辉石斑晶的反环带结构记录了岩浆房中基性熔体的补给过程(Huetal., 2018; Chengetal., 2020),可能是粗面安山质岩浆喷发的主要诱导因素。

图11 腾冲粗面安山岩岩浆房系统示意图① II类辉长岩包体代表粗面安山质岩浆形成的较紧密的“晶粥”;② I类辉长岩包体代表寄主粗面安山质岩浆形成的“晶粥”;③ 矿物聚晶代表寄主粗面安山质岩浆形成的“晶粥”碎片Fig.11 Schematic diagram to illustrate the plumbing system of trachyandesitic magmas in the Tengchong volcanic fieldNumbers ①, ② and ③ denote the distribution of Type II gabbroic xenoliths, Type I gabbroic xenoliths and glomerocrysts, respectively

6 结论

(1)腾冲新生代火山区晚更新世粗面安山岩中包含大量的辉长岩包体和矿物聚晶。辉长岩包体、聚晶与火山岩斑晶的岩石学、矿物学特征,尤其是单斜辉石的微量元素与全岩Sr-Nd-Pb同位素组成的对比研究结果表明,矿物聚晶和辉长岩包体与寄主粗面安山质岩浆同源,均来自腾冲深部地壳粗面安山质岩浆房。

(2)结合辉长岩包体与聚晶的结构特征与矿物温压计算结果,认为聚晶与辉长岩包体均代表粗面安山质岩浆房中上部的晶粥,快速上升的安山质岩浆将这些晶粥破碎并以聚晶和辉长岩包体的形式带至地表,基性岩浆的补给是导致粗面安山质岩浆喷发的重要诱发机制。

致谢中国地震局地质研究所樊祺诚研究员、中山大学地质科学与工程学院刘志超副教授与中国地质大学(北京)黄丰副教授给予了有益的建议;K-Ar年龄由中国地震局地质研究所李大明研究员完成;中国科学院地质与地球物理研究所高金亮与丁磊磊博士在野外考察与采样工作中给予了大量帮助;中国科学院地质与地球物理研究所张丽红博士在全岩地球化学成分测试中给予了帮助;匿名审稿专家提出宝贵的修改意见;在此一并致以衷心的感谢!

猜你喜欢
单斜包体安山岩
辽西义县组玄武岩中环带状单斜辉石的成因及其对岩浆演化的约束*
一种新型多功能电弧炉浇铸装置
榴辉岩中单斜辉石-石榴子石镁同位素地质温度计评述
常见的难熔包体矿物学特征分析
浙江玉环石峰山地区橄榄玄武岩中幔源包体的化学特征及其单斜辉石的“筛状结构”
西藏拿若铜矿床安山岩元素地球化学特征研究∗
王官屯油田安山岩油藏滚动评价探索
激发极化法寻找固体矿产的应用
浅谈玛瑙中常见包体的特征及成因
二连油田安山岩裂缝性储层压裂技术研究