基于瞬时流场潜力系数的水驱开发效果评价方法

2020-07-20 23:08:52冯其红李闪闪黄迎松张先敏刘海成刘丽杰
油气地质与采收率 2020年4期
关键词:流线水驱油水

冯其红,李闪闪,黄迎松,张先敏,刘海成,刘丽杰

(1.中国石油大学(华东)石油工程学院,山东青岛 266580;2.中国石化胜利油田分公司勘探开发研究院,山东东营 257015)

中国东部油田经过长期注水开发,现阶段大部分已进入特高含水期[1-3],注采流线长期固定,加剧了地下原油动用的不均衡性,导致注水效率低和驱油效果差。目前众多中外学者针对不同油藏条件开展了流场调整研究[4-8],但是如何快速评价流场调整后的开发效果仍是一个具有挑战性的问题。

中外学者对水驱油藏开发效果的评价指标构建开展了大量研究。陈民锋等从静态、动态流场评价两个方面来综合研究油藏开发条件和开发效果,提出了确定水驱油藏可动用潜力的流场分析方法[9]。张乔良等提出面通量作为表征累积冲刷强度的参数,确定了流场强度与可动油饱和度的对应关系[10]。谷建伟等将剩余油可采储量丰度、油相流动系数和流线密度作为剩余油可动潜力控制的评价指标,并利用调整后的剩余油可动潜力控制程度评价了井网调整效果[11]。ZHAO等提出流线簇的概念,对流场调整后的流体分布差异进行了表征与评价[12]。但是,目前水驱开发效果评价指标不统一,且多基于油藏基本生产数据衍生而来,无法直接表征地下流场的驱替变化特征,而且实际水驱油藏流场调整方案设计中评价指标的优化计算往往借助于油藏数值模拟手段,评价过程繁琐,评价效率过多依赖于设计的开发时间,对于大规模矿场实际问题的评价时间成本较高。为此,将地下流场作为研究对象,提取流场流线位置分布数据以及流线上油水相流动速率、饱和度分布的属性数据,构建流场潜力系数以直接反映流场水驱油潜力及水驱开发效果,进而提出基于瞬时流场潜力系数的水驱开发效果评价方法,以孤岛油田西区北Ng3-4单元为例,进行油藏流场调整后的水驱开发效果评价。

1 评价指标构建

考虑到油藏开发效果与地下流场分布之间存在直接相关关系[13-16],因此,基于水驱油藏地下流场分布特征,逐一提取不同时刻流场中各条流线上流经各点的空间位置坐标以及流线上各点的油水相流动速率和饱和度分布属性数据,进而根据提取出的流线属性参数,构建可表征地下流线水驱油能力的评价指标,包括流线上的油水体积比和油水流速比。其中流线上的油水体积比为不同时刻各条流线上所流经各点的油相体积之和与水相体积之和的比值,其计算式为:

流线上的油水流速比为不同时刻各条流线上所流经各点的油相流动速率之和与水相流动速率之和的比值,其计算式为:

将不同时刻下计算得到各条流线上的油水体积比和油水流速比分别进行算术平均,即可得到该时刻地下流场的整体油水体积比和整体油水流速比,其计算式分别为:

整体油水体积比可反映不同时刻下地下流场中所有流线上的油水相体积整体变化,该值越大,代表该时刻沿各流线方向未被注入水波及到的剩余油越多,即流线对高剩余油饱和度区域的波及程度越高。整体油水流速比可反映不同时刻地下流场中所有流线上的油水相流动能力差异,若该时刻流场中各条流线上流经各点的油相流动速度之和高于水相流动速度之和,则代表流线上的油相流动能力高于水相流动能力,水驱油阻力相对较小,该值越大,说明该时刻流经各流线方向的油相流动能力越强,即水驱油能力越强。

为了综合评价水驱开发效果变化,基于整体油水体积比和整体油水流速比构建水驱开发效果综合评价指标,即流场潜力系数,计算公式为:

由前述分析可知,整体油水体积比与整体油水流速比可分别表示地下流场中所有流线上未被注入水波及到的油相体积与油水流动能力差异,将上述2个特征参数进行组合,所构建的流场潜力系数则可以综合表征各流线流经方向上剩余油分布与油水可动性的匹配关系,该系数越大,代表流场整体波及程度越高、油相可动用能力越强,相应的水驱开发潜力越大,水驱开发效果也越好。

对于处于特高含水期的油藏,无论通过井网调整还是注采工作制度调整来实现地下流场调控,均会改变地下流场的流线分布状况,从而导致流场潜力系数的相应变化,因此,可以利用该系数变化来定量评价水驱油藏的流场调整开发效果。

2 评价方法建立与验证

2.1 评价方法建立

基于胜利油区某典型井组资料,建立流线数值模拟模型,其中井组采用正对行列式井网进行注水开发,井距和排距均为300 m,网格数为61×61×1,网格尺寸为5 m×5 m×5 m,孔隙度为0.35,渗透率为5 000 mD,地层原油黏度为50 mPa·s,注采液量保持平衡。在综合含水率达到98%时进行油藏流场调整,将流线角度分别调整为30°和60°。根据流线数值模拟结果,分别得到油藏流场潜力系数与累积产油量随生产时间的变化曲线。

图1 流场调整前后的评价指标变化曲线Fig.1 Changes of evaluation indexes before and after adjustment of flow field

分析流场潜力系数变化曲线(图1a)可见,流场潜力系数随时间呈递减趋势,与调整前相比,流线角度为30°和60°时的流场潜力系数整体均明显增大,且在相同时刻流线角度为60°时的流场潜力系数高于流线角度为30°的,这恰与相应条件下的累积产油量整体变化趋势一致(图1b),由此得出,流场潜力系数与累积产油量之间存在相关性,可以采用流场潜力系数评价水驱油藏开发调整效果,即若调整后流场潜力系数变大,累积产油量也增大,代表着油藏调整后开发效果变好。这是因为油藏流场调整后,必然使得原固有流线方向产生转变,减小优势流场方向流线密度,原来无流线波及或者流线部分波及区域将有更多的流线覆盖,使得流线上油水体积比变大,同时优势流线方向驱替压力梯度降低,原非主流线区域驱替压力梯度增加,油相流动能力提升,使得流线上油水流速比有所增加,进而导致流场潜力系数变大,水相驱油能力提高,使得开发效果有效改善。

地下流线分布变化与水驱油藏流场调整具有同步性,在水驱油藏流场调整措施完成的瞬间,地下流线也将完成重新分布,该时刻的流场潜力系数最大(图1),即代表着该流场调整措施完成后的最大水驱油能力,因此可以仅采用调整完成后瞬时计算的流场潜力系数来表征地下流场水驱油潜力。上述流场调整完成后瞬时计算得到的流场潜力系数也可称为瞬时流场潜力系数,该系数综合反映了地下流线与剩余油分布、油水可动能力之间的匹配关系,该值越大,则代表流线整体波及程度越高,剩余油可动用潜力越大,未来相应的水驱开发效果也越好。

2.2 方法验证

为进一步验证瞬时流场潜力系数与累积产油量之间的关系,仍以上述模型为例,流线角度在0°~90°进行随机转换,分析不同变流线角度下累积产油量与瞬时流场潜力系数之间的关系。由图2可以看出,瞬时流场潜力系数与累积产油量之间呈正相关,即瞬时流场潜力系数越大,水驱油藏累积产油量越高,反之亦然。因此,采用瞬时流场潜力系数来快速预测及定量评价水驱油藏的长期开发效果是可行的,从而建立基于瞬时流场潜力系数的水驱开发效果评价方法。

3 实例应用

图2 不同流线角度时瞬时流场潜力系数与累积产油量的关系Fig.2 Relationship between instantaneous flow field potential coefficient and cumulative oil production under different streamline angles

以孤岛油田西区北Ng3-4单元为例,该单元共有上、下2套开发层系,层系间隔层发育稳定,平均厚度为3.4 m。2套层系井网于1990年整体加密调整为行列井网,井网夹角为40°,井网形式长期保持不变至今,注采流线长期固定,平面纵向驱替不均衡,层系间动用状况、水淹程度存在差异,水驱无法波及部位的剩余油难以有效动用,注采强度大的主体部位水淹严重。取心井资料显示:不同层系同一井点处于不同流线部位,剩余油饱和度差异大,上层系饱和度相对较高。

选取该区块典型开发单元进行流线数值模拟分析。该开发单元上层系(图3a)井网中的注水井X3N15与采油井X4-14和X4-132、注水井X3-142与采油井X4-132和X4J12、注水井X3-13与采油井X4J12、注水井X5-11与采油井X4J12之间流线分布密集,而断层边部(右上角)无流线波及;下层系(图3b)中的注水井X3-14与采油井X3-131和X4-141、注水井X4-121与采油井X3-121、注水井X5-131与采油井X4-141和X4-13、注水井X5-122与采油井X4-13和X5-111之间流线分布密集,而注水井X3-14与采油井X4-13,注水井X4-121与采油井X4-13和X5-111之间无流线分布或流线分布稀疏。

针对上、下2套层系间井网形式交错、注采流线长期固定及动用状况差异大的问题,通过上、下2套层系井网互换的方式进行流场调整,使得上层系断层边部存在明显的注采对应关系,下层系注采主流线方向转变一定角度。

图3 调整前流线分布Fig.3 Streamline distribution before adjustment

根据建立的水驱开发效果评价方法,通过计算调整后的瞬时流场潜力系数定量评价开发调整效果,其中计算得到调整后的瞬时流场潜力系数为0.134,比调整前增加0.09,表明该调整方式可有效改善开发效果。井网互换后上层系断层边部的注采对应关系得到完善,即注水井X3-151与采油井X3-131、注水井X6-101与采油井X5-111之间区域有更多的流线波及(图4a),使剩余油得到有效动用;同样,下层系井网换成上层系井网后,注水井X5-11和X5-12与采油井X4N11和X4J12之间存在注采对应关系,且注水井X5-13与采油井X4-14之间的流线波及范围及流线密度增加(图4b),可以有效驱替剩余油。

同时,对该开发单元层系井网互换后的累积产油量和含水率变化进行预测,结果(图5)表明,调整后开发10 a,预测累积增油量为7.52×103m3,含水率下降0.17%,开发效果得到明显改善,这与基于瞬时流场潜力系数的水驱开发效果评价方法的评价结果一致,进一步验证了新建立的水驱开发效果评价方法的合理性与准确性。

4 结论

针对水驱油藏地下流场分布特征,通过提取流线空间位置坐标以及流线上油水相流动速率、饱和度分布的属性数据,构建了表征水驱油能力的流场潜力系数,进一步研究发现,仅采用瞬时流场潜力系数即可对油藏的最终水驱开发效果进行定量化评价,从而建立了基于瞬时流场潜力系数的水驱开发效果评价方法。

图4 调整后流线分布Fig.4 Streamline distribution after adjustment

图5 调整前后开发指标变化Fig.5 Changes in development indexes before and after adjustment

新建立的水驱开发效果评价方法通过直接表征地下流场的瞬时驱替变化特征,来预测及评价流场调整后的最终水驱开发效果,大大简化了评价指标计算过程,可以实现水驱开发效果的快速、定量评价。通过概念模型和油田实例分析,验证了基于瞬时流场潜力系数的水驱开发效果评价方法的合理性与准确性,对实际大规模水驱油藏开发效果评价优势明显。

符号解释

Cs——流场潜力系数;

i——流线标号;

j——流经流线上的节点;

L——某时刻地下流场中流线总条数;

ni——第i条流线上的节点总数;

SRow——某时刻地下流场的整体油水体积比;

SRowi——第i条流线上的油水体积比;

Soij,Swij——第i条流线上第j个节点处的油相和水相饱和度;

voij,vwij——第i条流线上第j个节点处的油相和水相流动速率;

VRowi——第i条流线上的油水流速比;

VRow——某时刻地下流场的整体油水流速比;

ΔLij——第i条流线上第j-1个节点与第j个节点之间的欧式距离。

猜你喜欢
流线水驱油水
水平井油水两相中的RAT流体成像分析
云南化工(2021年11期)2022-01-12 06:06:42
特高含水后期油藏水驱效果评价方法
几何映射
强底水礁灰岩油藏水驱采收率表征模型
任意夹角交叉封闭边界内平面流线计算及应用
油水混合
油水两相流超声波衰减测试方法
误区:维生素K需补充,但要远离“油水”
水驱砂岩油藏开发指标评价新体系
低矿化度水驱技术增产机理与适用条件