董国旗,王东东,刘海燕,毛 强,尹露生
鄂尔多斯盆地南部延安组巨厚煤层内古气候旋回分析
董国旗,王东东,刘海燕,毛 强,尹露生
(山东科技大学 地球科学与工程学院,山东 青岛 266590)
煤是一种气候敏感型沉积物,为了查明煤层中蕴含的古气候信息及其演化控制因素,选取鄂尔多斯盆地南部延安组一段4号巨厚煤层为研究对象,通过系统密集采样,并测试煤的有机显微组分含量、主量和微量元素及有机质稳定碳同位素含量。利用煤岩显微组分、特征元素和碳同位素等方法,分别在该巨厚煤层内部识别出4个温湿–干热交替的古气候旋回,且识别结果非常一致;该结果与前人在邻区4号煤层中使用古植物含量系数法的识别结果也非常吻合。在此基础上,与前人在该巨厚煤层中识别出的米兰科维奇旋回信息进行比较,综合分析认为该巨厚煤层中古气候旋回的发育与演化主要受到天体轨道参数中偏心率长周期的控制。研究成果证实了方法的可靠性,阐明了古气候旋回的成因机制。
巨厚煤层;古气候旋回;米兰科维奇旋回;控制因素;偏心率;彬长矿区
煤是一种气候敏感型沉积能源矿产,其中记录了丰富的成煤期古气候信息,特别是巨厚煤层能够记录较长时期的古气候变化,为古气候恢复和演化规律研究提供了良好的素材。此外,研究地史上古气候的变化规律及其控制因素,可以在一定程度上预测未来全球的气候变化。因此,煤层内部古气候特征的研究一直是煤地质学的热点问题。
煤中常量、微量元素的含量及分布规律,可以用来分析成煤期的古气候[1-3]及变化规律[4-7]。煤中铝、镓在高岭石中普遍富集,与温暖潮湿气候有关[2-4];而煤中钾和铷的含量与伊利石相关,反映干冷气候条件[4]。煤岩成分包含成煤期的古气候信息,可以用来分析成煤期的古气候演化,时间跨度较小的煤层甚至一层煤的形成过程中,可以很好地反映出气候的细微差别[8]。煤中蕴含的孢粉信息可以重建成煤期的古植物类型,根据成煤植物的生活习性也可以分析成煤期古气候的基本格局和演化规律[9-10]。煤(泥炭)中生物标志物(芳烃和二萜化合物等)分析,并将其与海洋[11]和陆地[12]沉积物中生物标志物进行比较,可以准确地识别成煤期的干湿气候变化[13-14]。此外,煤层中稳定碳同位素值及其变化也可以反映成煤期的古气候特征[15-16]。
基于前人的研究成果可知,煤中蕴含丰富的古气候信息。为此,笔者以鄂尔多斯盆地南部彬长矿区延安组巨厚煤层为例,采用煤岩显微组分法、特征元素法和有机质稳定碳同位素法分别识别巨厚煤层中蕴含的古气候旋回信息,探究巨厚煤层中古气候旋回发育的控制因素,阐明古气候旋回的成因机制。
鄂尔多斯盆地是中国中北部大型的中、新生代坳陷盆地,是我国第二大沉积盆地,跨陕西、甘肃、宁夏、内蒙古和山西5个省(自治区),面积约25万km2,周围被秦岭、六盘山、贺兰山、大青山及吕梁山环绕。盆地南缘紧邻渭河断陷,南界大致位于渭河河谷一线;北缘紧邻河套断陷,北界大致在乌拉山–大青山一线;东界应在大同–义马一线以东;西界位于贺兰山西麓–青铜峡–固原一线。彬长矿区位于鄂尔多斯盆地的西南部,成煤期在煤田内存在几个古隆起,成为区域性的物源;彬长矿区的大佛寺煤矿位于该煤田的南部(图1)。
彬长矿区的含煤地层为中侏罗统延安组,其岩相由河、湖相砂岩及泥岩夹煤层组成,含丰富的植物化石,按其沉积特点,延安组自下而上可以分为5段,延一段至延五段[17],每段上部发育一个煤组,下部以砂岩沉积为主(图1c)。大佛寺煤矿延安组煤层普遍较厚,本次的研究对象是彬长矿区大佛寺煤矿ZK1钻孔中的延安组一段4号巨厚煤层,单层厚度11.30 m,主要成煤环境为河漫沼泽、滨湖沼泽等(图1c)。
彬长矿区延安组一段4号煤中主要发育孢粉组合,裸子植物花粉含量高于蕨类植物孢子,以花粉含量高为特色,孢子也占重要比例,反映出成煤植物主要为蕨类和裸子植物[10]。一般认为的母体植物主要为掌鳞杉科,一般出现在干旱炎热的气候条件[18-20],也能适应潮湿气候[21];而孢子母体植物主要为桫椤科和蚌壳蕨科(部分),主要生长在潮湿的热带和亚热带[22]。古植物孢粉、孢子组合等特征,反映了延安组4号煤层成煤期古气候环境的复杂性;成煤沼泽以森林沼泽为主,局部存在草本植物相对富集的沼泽环境。该时期植物群落的发育情况,反映了成煤期主要为暖温带–亚热带气候。
在彬长矿区延安组一段4号煤层中按0.5 m等间距系统采集22个样品。各样品分别进行煤岩测试、有机质稳定碳同位素测试和微量元素测试。
煤岩显微组分定量依据GB/T 8899—2013《煤的显微组分组和矿物测定方法》测定。
有机质稳定碳同位素测试采用MAT251/252系列同位素质谱仪,根据GB/T 18340.2—2010《有机质稳定碳同位素测定同位素质谱法》分析,样品测试前需盐酸酸化去除无机碳元素。
微量元素测试采用等离子体质谱仪(ICP-MS),型号为X Series 2,按照GB/T 14506.30—2010《硅酸盐岩石化学分析方法第30部分:44个元素量测定》进行测试。
在充分吸收借鉴前人相关研究成果的基础上,本次主要通过煤岩显微组分法、特征元素法、碳同位素法分析鄂尔多斯盆地南部延安组4号巨厚煤层中蕴含的古气候旋回信息。
煤岩特征与古气候的温度、湿度密切相关,气候越潮湿,植物遗体越能充分分解形成富镜质组的煤层;相反,气候越干燥,越易形成富惰性组的煤层[8,23]。所以镜质组是在覆水还原的条件下,经凝胶化作用形成;惰质组是在干热的氧化沼泽环境下,经丝炭化作用形成[24]。如果泥炭沼泽是水位高、覆水和潮湿的微环境,形成的泥炭进而变质形成的煤中镜质组就高;反之如果泥炭沼泽水位低、干燥微环境居多,最后形成的煤惰质组就高[25-26]。根据各显微组分含量关系,利用其统计值,引入几个参数更加直观地反映煤层的成因特征[27],其中,煤中镜惰比(/,也称潮湿系数)大小,反映了成煤期泥炭沼泽的潮湿–干燥程度[28-29]。古气候温暖湿润与镜质组、惰质组含量和镜惰比有关,/>1,反映气候较为温暖潮湿;/<1,反映气候较为炎热干燥。
图1 鄂尔多斯盆地彬长矿区地质简图
根据镜质组、惰质组含量和/的变化趋势,可以在彬长矿区4号巨厚煤层中识别出4次温湿–干热的古气候旋回变化,由早到晚各古气候旋回依次标号为Ⅰ、Ⅱ、Ⅲ、Ⅳ,该煤层厚度为11.30 m,平均每个气候旋回厚度为2.83 m;4次温湿–干热的古气候旋回变化都表现为温湿–干热–温湿的变化过程,且曲线的变化趋势总体较为一致(图2)。
稳定同位素是研究古环境的重要手段[30],碳同位素组成是古气候、古环境等生态效应的综合体现[31-32],许多学者通过研究沉积物中碳同位素组成(13C)以提取古气候信息[33]。煤层中有机碳同位素13C可以表示泥炭沉积时的温度和湿度条件,气候因子(湿度和温度)对植物碳同位素组成具有重要的影响[16,34-35],所以,13C与降水量具有负相关关系,即随着降雨量的增多,13C值减小(变轻);在较干旱环境下,植物通过调节气孔阻力以避免过多的水分蒸发,导致细胞内CO2浓度降低,进而引起13C值变化[16,36-37]。在植物种类、大气成分等条件一定情况下,干热气候有利于13C在植物体内的富集,成煤植物13C值偏高;相反,湿暖气候不利于13C在植物体内富集,成煤植物13C值偏低[38]。即随着温度升高13C值变大,反映温湿—干热的古气候变化;相反,13C值变小,反映干热—温湿的古气候变化。
图2 彬长矿区延安组4号煤层煤岩组分含量与古气候旋回变化
彬长矿区延安组4号煤层中13C具有明显的负偏移趋势和正偏移趋势,揭示了由干热向温湿、由温湿向干热的古气候转变,进而也可识别出4号煤层沉积期经历了温湿–干热–温湿的古气候演化过程,编号为Ⅰ、Ⅱ、Ⅲ、Ⅳ(图3)。
不同的表生自然环境对不同性质元素的分解、迁移、富集行为等具有影响,因此,元素在沉积物中的波动性可一定程度地反映沉积时气候环境条件。笔者在参考前人关于古气候地球化学判别标志[39-40]的前提下,采用元素对比值进行沉积环境分析。
前人研究认为,喜湿型微量元素主要有Cr、Ni、Mn、Cu、Fe、Ba、Br、Co、Cs、Hf、Rb、Sc、Th等,而喜干型微量元素主要有Sr、Pb、Au、As、Ca、Na、Ta、U、Zn、Mg、Mo、B等[41]。元素Sr含量大于20 μg/g,反映气候干热,小于0.15 μg/g,反映气候温湿;元素Mn含量大于0.15 μg/g,反映气候干热,小于0.15 μg/g反映气候温湿;Sr/Cu值大于10反映干热气候,小于10反映温湿气候[42-45]。使用微量元素对古气候进行研究过于单一,本文还探讨了具有特征指示意义的常量元素的比值变化。一般情况下,(Mg)/(Ca)值大于0.5反映温湿气候,小于0.5反映干旱气候[46];(FeO)/(Fe2O3)比值大于0.7反映潮湿气候,小于0.7反映干旱气候[30,47];(CaO)/((MgO+Al2O3))值大于0.6反映温暖气候,小于0.6反映较冷气候;(CaO+K2O+Na2O)/(Al2O3)值大于5反映干旱气候,小于5反映湿润气候[48-49]。
在彬长矿区延安组4号煤层中,各元素含量及各元素比值的变化趋势基本相似,变化幅度局部略有差别。根据元素含量及其比值的变化趋势识别出4号煤层沉积期经历了4次温湿–干热的古气候旋回变化,由早到晚各古气候旋回依次标号为Ⅰ、Ⅱ、Ⅲ、Ⅳ,该煤层厚度为11.30 m,平均每个气候旋回厚度为2.83 m(图4)。
图3 彬长矿区延安组4号煤层碳同位素与古气候旋回变化
根据煤岩显微组分法、特征元素法和有机质稳定碳同位素法,均可在鄂尔多斯南部彬长矿区延安组4号巨厚煤层中识别出4个温湿–干热的古气候旋回,每个旋回变化都表现为温湿–干热–温湿的变化过程,平均每个气候旋回厚度为2.83 m。
植物历来有自动“温度计”之称,实践证明,一定的植物群落反映一定的气候,古植物遗体的大量堆积是聚煤作用发生的物质基础,通过对煤层(夹矸)中古植物孢粉组合的相关分析与古植物化石的识别,可以恢复成煤期的古植物群落。古植物孢粉在煤层及细碎屑岩中数量繁多、保存完好,不同类型的古植物孢粉组合及生态特征可反映成煤期气候。
根据煤层中古植物的孢粉类型、含量及孢粉母体的生态特征(干湿、冷热等),提取煤层中蕴含的古气候信息。本文利用3种识别方法所得出的古气候旋回变化次数,与庄军等[10]在鄂尔多斯盆地南部黄陇煤田延安组4号巨厚煤层中识别出的4次温湿–干热的古气候旋回变化一致,论证了以上3种识别方法的可靠性。
前人研究表明,新近纪煤层中蕴含着米兰科维奇旋回信息,并且可以利用频谱分析等信号寻找这些旋回信息,进而研究煤层中的古气候旋回[50-52]。通过对4号巨厚煤层的测井数据(自然伽马、岩石密度测井数据)进行频谱分析处理,查明其中蕴含的地球公转轨道参数,识别出米兰科维奇旋回,进而分析巨厚煤层中由地球公转轨道参数形成的古气候旋回次数和平均厚度,从成因机制上阐明古气候旋回机理,进而验证上述3种方法综合识别出的古气候旋回的可靠性。
Wang Dongdong等[53]通过对彬长矿区延安组4号煤层的自然伽马和岩石密度测井数据进行一维连续小波变换分析,根据频谱分析识别出的低频、中频和高频的平均值分别为0.28、0.65、1.33周期/m,进而识别出其中蕴含的米兰科维奇旋回,并进一步划分出4号煤层中存在的不同轨道参数控制的米兰科维奇旋回,即4个偏心率控制的长周期旋回、9个斜率控制的中周期旋回和15个岁差控制的短周期旋回。由此可知,笔者用3种方法识别出的4号煤层中的古气候旋回,是由偏心率控制的天文周期旋回,再次验证了本文方法判定的旋回结果的可靠性。
a. 通过煤岩显微组分、特征元素及有机质稳定碳同位素等方法均可在鄂尔多斯盆地彬长矿区延安组4号煤层内识别出4个温湿–干热的古气候旋回。识别结果与前人在邻区使用古植物含量系数法识别的古气候旋回结果非常吻合,证实本研究方法的可靠性。
b. 通过比较分析彬长矿区巨厚煤层中蕴含的控制气候演化的米兰科维奇旋回信息,认为该巨厚煤层中古气候旋回的发育与演化主要受到天体轨道参数中偏心率长周期的控制。
图4 彬长矿区延安组4号煤层元素特征与古气候旋回变化
请听作者语音介绍创新技术成果等信息,欢迎与作者进行交流
[1] SUTTNER L J,DUTTA P K. Alluvial sandstone composition and palaeoclimate. Framework mineralogy[J]. Journal of Sedimentary Petrology,1986,56:329–345.
[2] HIERONYMUS B,KOTSCHOUBEY B,BOULEGUE J. Gallium behavior in some contrasting lateritic profiles from Cameroon and Brazil[J].Journal of Geochemical Exploration,2001,72(2):147–163.
[3] BECKMANN B,FLÖGEL S,HOFMANN P,et al. Orbital forcing of Cretaceous river discharge in tropical Africa and ocean response[J]. Nature,2005,437(7056):241–244.
[4] RATCLIFFE K T,WRIGHT A M,HALLSWORTH C,et al. Alternative correlation techniques in the petroleum industry:An example from the(Lower Cretaceous) Basal Quartz,southern Alberta,Bullet[J]. American Association of Petroleum Geologists Bulletin,2004,88(10):1419–1432.
[5] ROY D K,ROSER B P. Climatic control on the composition of Carboniferous-Permian Gondwana sediments,Khalaspir basin,Bangladesh[J]. Gondwana Research,2013,23(3):1163–1171.
[6] 武子玉,周永昶. 吉南地区不同沉积环境原煤微量元素地球化学特征[J]. 岩石矿物学杂志,2004,23(4):361–364. WU Ziyu,ZHOU Yongchang. Microelements geochemical characteristics of coals in different sedimentary environments of southern Jilin Province[J]. Acta Petrologica Et Mineralogica,2004,23(4):361–364.
[7] YANDOKA SARKI B M,ABDULLAH H W,ABUBAKAR M B,et al. Geochemistry of the Cretaceous coals from Lamja Formation,Yola sub-basin,northern Benue trough,NE Nigeria:Implications for paleoenvironment,paleoclimate and tectonic setting[J]. Journal of African Earth Sciences,2015,104:56–70.
[8] 周春光,杨起,潘治贵,等. 从煤岩成分看延安期古气候变迁[J]. 中国煤田地质,1996,8(4):12–14. ZHOU Chunguang,YANG Qi,PAN Zhigui,et al. Paleo-climate evolution of Yan’an stage inferred from petrographic composition of coal[J]. Coal Geology of China,1996,8(4):12–14.
[9] 阎存凤,袁剑英,赵应成,等. 蒙、甘、青地区侏罗纪孢粉组合序列及古气候[J]. 天然气地球科学,2006,17(5):634–639. YAN Cunfeng,YUAN Jianying,ZHAO Yingcheng,et al. Jurassic spora-pollen assemblages and paleoclimate in Inner Mongolia,Gansu,Qinghai,China[J]. Natural Gas Geoscience,2006,17(5):634–639.
[10] 庄军,吴景钧. 鄂尔多斯盆地南部早中侏罗世聚煤特征与煤的综合利用[M]. 北京:地质出版社,1996. ZHUANG Jun,WU Jingjun.Comprehensive research on Lower and Middle Jurassic coal-accumulation and Multi-utilization of coal resources in southern part of Ordos basin [M]. Beijing:Geological Publishing House,1996.
[11] BIRGENHEIER L P,FRANK T D,FIELDING C R,et al. Coupled carbon isotopic and sedimentological records from the Permian system of eastern Australia reveal the response of atmospheric carbon dioxide to glacial growth and decay during the Late Palaeozoic Ice Age[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2010,286(3/4):178–193.
[12] RETALLACK G J,SHELDON N D,CARR P F,et al. Multiple Early Triassic greenhouse crises impeded recovery from Late Permian mass extinction[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2011,308(1/2):233–251.
[13] LÓPEZ-DÍAS V,URBANCZYK J,BLANCO C G,et al. Biomarkers as paleoclimate proxies in peatlands in coastal high plains in Asturias,N Spain[J]. International Journal of Coal Geology,2013,116/117:270–280.
[14] IZART A,SUAREZ-RUIZ I,BAILEY J. Paleoclimate reconstruction from petrography and biomarker geochemistry from Permian humic coals in Sydney coal basin(Australia)[J]. International Journal of Coal Geology,2015,138:145–157.
[15] BECHTEL A,GRUBER W,SACHSENHOFER R F,et al. Organic geochemical and stable carbon isotopic investigation of coals formed in low-lying and raised mires within the Eastern Alps(Austria)[J]. Organic Geochemistry,2001,32(11):1289–1310.
[16] 鲁静,邵龙义,王占刚,等. 柴北缘侏罗纪煤层有机碳同位素组成与古气候[J]. 中国矿业大学学报,2014,43(4):612–618. LU Jing,SHAO Longyi,WANG Zhangang,et al. Organic carbon isotope composition and paleoclimatic evolution of Jurassic coal seam in the northern Qaidam basin[J]. Journal of China University of Mining & Technology,2014,43(4):612–618.
[17] 王双明,张玉平. 鄂尔多斯侏罗纪盆地形成演化和聚煤规律[J]. 地学前缘,1999,6(增刊1):147–155. WANG Shuangming,ZHANG Yuping. Study on the formation,evolution and coal-accumulating regularity of the Jurassic Ordos basin[J]. Earth Science Frontiers,1999,6(S1):147–155.
[18] 苗淑娟. 内蒙古固阳含煤层中生代地层及古生物(九):孢子花粉[M]. 北京:地质出版社,1982. MIAO Shujuan. Mesozoic strata and paleontology of Guyang coal bearing seam, Inner Mongolia(九):Spores pollen[M]. Beijing:Geological Publishing House,1982.
[19] HARRIS T M. A Litassic-Rhaetic flora in south Wales[J]. Proceedings of the Royal Society of London,Series B, Biological Sciences,1957,147(928):289–308.
[20] VAKHRAMEEV V A. Range and paleontology of Mesozoic conlfers,Cheirilepidiaceae[J]. Paleontological Journal,1970,70(1):19–34.
[21] 段宗怀.花粉及其古气候意义[J]. 煤田地质与勘探,1991,19(6):14–21. DUAN Zonghuai.pollen and its paleoclimate meaning[J]. Coal Geology & Exploration,1991,19(6):14–21.
[22] 钱丽君,吴景钧. 陕西北部侏罗纪含煤地层及聚煤特征[M]. 西安:西北大学出版社,1987. QIAN Lijun,WU Jingjun. Jurassic coal-bearing strata and accumulation from northern Shaanxi[M]. Xi’an:Northwest University Press,1987.
[23] 宋孝忠. 煤岩显微图象假边界对显微组分组自动识别的影响[J]. 煤田地质与勘探,2019,47(6):45–50. SONG Xiaozhong. Effect of false boundary of microscopic image on automatic identification of maceral group[J]. Coal Geology & Exploration,2019,47(6):45–50.
[24] 杨起,韩德馨. 中国煤田地质学[M]. 北京:煤炭工业出版社,1979. YANG Qi,HAN Dexin. Coalfield geology of China[M]. Beijing:China Coal Industry Publishing House,1979.
[25] 王东东,侯懿隽,刘海燕,等. 巨厚煤层沉积间断面的综合判别方法与成因模式[J]. 煤炭科学技术,2018,46(2):56–64. WANG Dongdong,HOU Yijun,LIU Haiyan,et al. Comprehensive identification method of sedimentary hiatal surface in ultra thick coal seam and its genetic mode[J]. Coal Science and Technology,2018,46(2):56–64.
[26] STACH E. Stach’s textbook of coal petrology,third revision[M]. Beijing:China Coal Industry Publishing House,1990.
[27] 方爱民,雷家锦,金奎励,等. 山西西山煤田7号煤层煤相研究[J]. 中国煤田地质,2003,15(5):12–16. FANG Aimin,LEI Jiajin,JIN Kuili,et al. An anthracographic study on No.7 coal in Xishan coalfield,Shanxi[J]. Coal Geology of China,2003,15(5):12–16.
[28] 李清. 山西延川南煤层气田2号煤层煤相研究:煤层气开发选区意义[J]. 石油实验地质,2014,36(2):245–248. LI Qing. Coal facies of No.2 coal in Yanchuannan coal field of Shanxi:Significance for constituencies of coalbed methane exploitation[J]. Petroleum Geology & Experiment,2014,36(2):245–248.
[29] 王德祖. 华亭矿区5号煤层煤相研究[J]. 中国煤田地质,2005,17(4):6–8. WNAG Dezu. A study on 5 coal seam facies,Huating mining area[J]. Coal Geology of China,2005,17(4):6–8.
[30] 腾格尔,刘文汇,徐永昌,等. 缺氧环境及地球化学判识标志的探讨:以鄂尔多斯盆地为例[J]. 沉积学报,2004,22(2):365–372. Tonger,LIU Wenhui,XU Yongchang,et al. The discussion on anoxic environments and its geochemical identifying indices[J]. Acta Sedimentologica Sinica,2004,22(2):365–372.
[31] 何刚,李双应. 晚古生代全球古气候特征及其研究方法[J]. 安徽地质,2006,16(4):241–246. HE Gang,LI Shuangying. Global palaeoclimate characteristics and research technique of Late Palaeozoic[J]. Geology of Anhui,2006,16(4):241–246.
[32] 邵龙义,JONES T P. 桂中晚二叠世碳酸盐岩碳同位素的地层学意义[J]. 沉积学报,1999,17(1):84–88. SHAO Longyi,JONES T P. Carbon isotopes and the stratigraphical implication of the Late Permian carbonates in central Guangxi[J]. Acta Sedimentologica Sinica,1999,17(1):84–88.
[33] 李相博,陈践发,张平中. 青藏高原(东北部)现代植物碳同位素组成特征及其气候信息[J]. 沉积学报,1999,17(2):325–329. LI Xiangbo,CHEN Jianfa,ZHANG Pingzhong. The characteristics of carbon isotope composition of modern plants over Qinghai-Tibet plateau(NE) and its climatic information[J]. Acta Sedimentologica Sinica,1999,17(2):325–329.
[34] 邵龙义. 碳酸盐岩氧、碳同位素与古温度等的关系[J]. 中国矿业大学学报,1994,23(1):39–45. SHAO Longyi. The relation of the oxygen and carbon isotope in the carbonate rocks to the paleotemperature etc.[J]. Journal of China University of Mining & Technology,1994,23(1):39–45.
[35] 邵龙义,窦建伟,张鹏飞. 西南地区晚二叠世氧、碳稳定同位素的古地理意义[J]. 地球化学,1996,25(6):575–581. SHAO Longyi,DOU Jianwei,ZHANG Pengfei. Paleogeographic significances of carbon and oxygen isotopes in Late Permian rocks of southwest China[J]. Geochimica,1996,25(6):575–581.
[36] 王谋,李勇,黄润秋,等. 青藏高原腹地植物碳同位素组成对环境条件的响应[J]. 山地学报,2005,23(3):274–279. WANG Mou,LI Yong,HUANG Runqiu,et al. The responses of floral carbonate isotopic compositions of the central Qinghai-Tibet plateau plants to environmental conditions[J]. Journal of Mountain Science,2005,23(3):274–279.
[37] 尹锦涛,吴颖,姜呈馥,等. 子长–延川矿权区晚三叠世聚煤环境及聚煤规律[J]. 煤田地质与勘探,2016,44(4):8–13. YIN Jintao,WU Ying,JIANG Chengfu,et al. Late Triassic coal-forming environment and coal-accumulating law in Zichang-Yanchuan mining area[J]. Coal Geology & Exploration,2016,44(4):8–13.
[38] 鲁静,杨敏芳,邵龙义,等. 陆相盆地古气候变化与环境演化、聚煤作用[J]. 煤炭学报,2016,41(7):1788–1797. LU Jing,YANG Minfang,SHAO Longyi,et al. Paleoclimate change and sedimentary environment evolution,coal accumulation:A Middle Jurassic terrestrial[J]. Journal of China Coal Society,2016,41(7):1788–1797.
[39] 陈海霞. 川西雅安地区白垩纪古环境古气候研究[D]. 成都:成都理工大学,2009. CHEN Haixia.Research of paleoenvironment and paleoclimate of Cretaceous in Ya’an area, western Sichuan basin[D]. Chengdu:Chengdu University of Technology,2009.
[40] 付亚飞,邵龙义,张亮,等. 焦作煤田石炭–二叠纪泥质岩地球化学特征及古环境意义[J]. 沉积学报,2018,36(2):415–426. FU Yafei,SHAO Longyi,ZHANG Liang,et al. Geochemical characteristics of mudstones in the Permo-Carboniferous Strata of the Jiaozuo coalfield and their paleoenvironmental significance[J]. Acta Sedimentologica Sinica,2018,36(2):415–426.
[41] 范玉海,屈红军,王辉,等. 微量元素分析在判别沉积介质环境中的应用:以鄂尔多斯盆地西部中区晚三叠世为例[J]. 中国地质,2012,39(2):382–389. FAN Yuhai,QU Hongjun,WANG Hui,et al. The application of trace elements analysis to identifying sedimentary media environment:A case study of Late Triassic strata in the middle part of western Ordos basin[J]. Geology in China,2012,39(2):382–389.
[42] 熊小辉,肖加飞. 沉积环境的地球化学示踪[J]. 地球与环境,2011,39(3):405–414. XIONG Xiaohui,XIAO Jiafei. Geochemical indicators of sedimentary environments:A summary[J]. Earth and Environment,2011,39(3):405–414.
[43] 王随继,黄杏珍,妥进才,等. 泌阳凹陷核桃园组微量元素演化特征及其古气候意义[J]. 沉积学报,1997,15(1):65–70. WANG Suiji,HUANG Xingzhen,TUO Jincai,et al. Evolutional characteristics and their paleoclimate significance of trace elements in the Hetaoyuan Formation,Biyang depression[J]. Acta Sedimentologica Sinica,1997,15(1):65–70.
[44] 薛罗. 恩平凹陷古近系烃源岩元素地球化学综合评价[D]. 武汉:中国地质大学(武汉),2013. XUE Luo.Element geochemistry evaluation of Paleogene source rocks in Enping depression[D]. Wuhan:China University of Geosciences(Wuhan),2013.
[45] 胡晓峰,刘招君,柳蓉,等. 抚顺盆地始新统计军屯组微量元素特征及油页岩的有利成矿条件[J]. 吉林大学学报(地球科学版),2012,42(增刊1):60–71.HU Xiaofeng,LIU Zhaojun,LIU Rong,et al. Trace element characteristics of Eocene Jijuntun Formation and the favorable metallogenic conditions of oil shale in Fushun basin[J]. Journal of Jilin University(Earth Science Edition),2012,42(S1):60–71.
[46] 张彬,姚益民. 利用微量元素统计分析东营凹陷新生代沙四晚期湖泊古环境[J]. 地层学杂志,2013,37(2):186–192. ZHANG Bin,YAO Yimin. Trace element and palaeoenvironmental analyses of the Cenozoic Lacustrine deposits in the Upper E4 Submember of the Dongying basin[J]. Journal of Stratigraphy,2013,37(2):186–192.
[47] 梁文君,肖传桃,肖胜. 川西地区中二叠世—中三叠世微量、常量元素与古环境、古气候关系研究[J]. 科学技术与工程,2015,15(11):14–24. LIANG Wenjun,XIAO Chuantao,XIAO Sheng. Study on relationships between paleoenvironment,paleoclimate of Middle Permian-Middle Triassic and constant,trace elements in western Sichuan[J]. Science Technology and Engineering,2015,15(11):14–24.
[48] 杜晨,张兵,张世涛,等. 浅谈湖泊沉积环境演变中元素地球化学的应用及原理[J]. 地质与资源,2012,21(5):487–492. DU Chen,ZHANG Bing,ZHANG Shitao,et al. Application and principle of element geochemistry in the evolution of lake sedimentary environment[J]. Geology and Resources,2012,21(5):487–492.
[49] 赵锡文. 古气候学概论[M]. 北京:地质出版社,1992. ZHAO Xiwen. Introduction to paleoclimatology[M]. Beijing:Geology Publishing House,1992.
[50] LARGE D J. A 1.16 Ma record of carbon accumulation in western European peatland during the Oligocene from the Bally money lignite,northern Ireland[J]. Journal of the Geological Society,2007,164(6):1233–1240.
[51] LARGE D J,JONES T F,SOMERFIELD C,et al. High-resolution terrestrial record of orbital climate forcing in coal[J]. Geology,2003,31(4):303–306.
[52] 邵龙义,王学天,鲁静,等. 再论中国含煤岩系沉积学研究进展及发展趋势[J]. 沉积学报,2017,35(5):1016–1031. SHAO Longyi,WANG Xuetian,LU Jing,et al. A reappraisal on development and prospect of coal sedimentology in China[J]. Acta Sedimentologica Sinica,2017,35(5):1016–1031.
[53] WANG Dongdong,YAN Zhiming,LIU Haiyan,et al. The net primary productivity of Mid-Jurassic peatland and its control factors:Evidenced by the Ordos basin[J]. International Journal of Mining Science and Technology,2018,28(2):177–185.
Analysis of paleoclimatic cycles in the ultra thick coal seam of Yan’an Formation in the southern Ordos basin
DONG Guoqi, WANG Dongdong, LIU Haiyan, MAO Qiang, YIN Lusheng
(College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China)
Coal is a climate-sensitive sediment that contains abundant paleoclimate information. In order to find out the paleoclimate information contained in the coal seam and the evolution of its controlling factors, the No.4 thick coal seam in the first member of Yan’an Formation in the south of Ordos basin was studied. Based on the intensive sampling of the thick coal seam, the information of organic macerals, major and trace elements, and stable carbon isotopes of organic matter were systematically tested. By using the macerals, characteristic elements and carbon isotopes of coal and rocks, four cycles of paleoclimate with alternation of warm-wet and dry-heat have been identified in the thick coal seam. The results of this study are similar to those of the previous studies in the same seam in the adjacent area, and the paleoclimatic cycle identified by the method of paleovegetation content coefficient was very consistent. Based on the comparative analysis of the Milankovitch cycle information which controlled the climate evolution in the thick coal seam, it is considered that the development and evolution of the paleoclimate cycle in the thick coal seam were mainly controlled by the long period of eccentricity in the orbit parameters of the celestial body. The results confirm the reliability of the method and elucidate the genetic mechanism of paleoclimate cycloaddition.
ultra thick coal seam; paleoclimate cycle; Milankovitch cycle; controlling factor; eccentricity; Binchang mining area
P539.2;P618.11
A
10.3969/j.issn.1001-1986.2020.03.008
1001-1986(2020)03-0051-08
2019-04-15;
2019-08-05
国家自然科学基金项目(41402086)
National Natural Science Foundation of China(41402086)
董国旗,1993年生,男,安徽阜阳人,硕士,研究方向为煤地质学. E-mail:2410693539@qq.com
王东东,1983年生,男,山东潍坊人,博士,副教授,硕士生导师,从事煤田地质与勘探研究工作. E-mail:wdd02_1@163.com
董国旗,王东东,刘海燕,等. 鄂尔多斯盆地南部延安组巨厚煤层内古气候旋回分析[J]. 煤田地质与勘探,2020,48(3):51–58.
DONG Guoqi,WANG Dongdong,LIU Haiyan,et al. Analysis of paleoclimatic cycles in the ultra thick coal seam of Yan’an Formation in the southern Ordos basin[J]. Coal Geology & Exploration,2020,48(3):51–58.
(责任编辑 范章群)