基于未确知测度理论的岩溶隧道塌方风险预警

2020-06-16 02:41王天瑜屈丽娜倪利智沈丹红宁世强

王天瑜 屈丽娜 倪利智 沈丹红 宁世强

摘 要:為准确地判定岩溶隧道开挖过程中的塌方风险,应用未确知测度理论,建立塌方风险预警模型。首先,根据隧道塌方的影响因素分析,建立隧道开挖塌方风险预警的三级指标体系,选取年平均降雨量、单轴抗压强度、围岩渗透系数、岩溶直径、隧道埋深、开挖工法等18项指标作为预警指标,包括9个定量指标和9个定性指标,划分5个预警等级。其次,构建各定量指标和定性指标的分级标准,构造各定量指标的未确知测度函数,利用信息熵理论计算各指标权重,依照置信度识别准则进行塌方风险预警等级判定。最后,选取某岩溶区隧道工程为实例,验证该预警模型的适用性。结果表明:该隧道开挖塌方风险预警等级为Ⅲ级,即为橙色预警等级,该结果与实际情况较吻合,说明隧道开挖过程中存在较大坍塌危险,隧道内应配备专职地质灾害安全员,并对地质灾害进行不间断监测。该预警方法能够为提前采取塌方风险防范措施和编制应急预案提供理论依据,也为隧道塌方风险预警提供新的思路。

关键词:隧道开挖;塌方风险;未确知测度理论;预警指标;置信度识别

中图分类号:X 937

文献标志码:A

文章编号:1672-9315(2020)02-0284-08

DOI:10.13800/j.cnki.xakjdxxb.2020.0213开放科学(资源服务)标识码(OSID):

Early warning of karst tunnel collapse risk based on

uncertainty measurement theory

WANG Tian-yu,QU Li-na,NI Li-zhi,SHEN Dan-hong,NING Shi-qiang

(School of Energy & Environment Engineering,Zhongyuan University of Technology,Zhengzhou 451191,China)

Abstract:In order to accurately determine the collapse risk during karst tunnel excavation,the early warning mode for landslide risk was established applying uncertainty measurement theory.Firstly,three-level index system for early warning of tunnel collapse risk was established based on the analysis of the influence factors.Annual mean rainfall,uniaxial compressive strength,wall rock osmotic coefficient,karst diameter,tunnel buried depth,excavation method and other eighteen factors were selected as early-warning indexes,among which are nine quantitative indexes and nine qualitative indexes,and five warning levels were divided.Then,the classification criteria of quantitative indexes and qualitative indexes were constructed,the uncertainty measurement function of each quantitative index was built,the index weight was calculated through information entropy theory,and the landslide risk warning level was determined in accordance with the rules of credible recognition criteria.Finally,a tunnel project in a karst area was taken as an engineering example to examine the applicability of the present model.The result shows that the collapse risk warning level in tunnel excavation is Ⅲ,or orange warning level,and it fits the actual situation well,which indicates that there is a greater collapse risk during the tunnel excavation,and full-time geological hazard safety officers should be equipped in the tunnel,and the geological hazard should be continuously monitored.Therefore,the warning method can provide a theoretical basis for taking collapse risk prevention measures and preparing emergency plan in advance,as well asa new idea for tunnel collapse risk warning.

为了构建岩溶隧道开挖塌方风险预警模型,将表1所建立预警指标取值范围与预警等级相对应,参考现行的围岩分类方法[2-3]和施工事故预警分类[19-20],把隧道塌方风险预警级别分为:绿色预警(Ⅰ级)、蓝色预警(Ⅱ级)、橙色预警(Ⅲ级)、黄色预警(Ⅳ级)、红色预警(Ⅴ级),分别记为C1,C2,C3,C4,C5,对应的塌方危险性由小到大,见表2.三级指标中,9个定量指标和9个定性指标。对于定性指标,经参考相关文献[1-3,21-23],采用分级标准量化法对其进行分级和取值,实现定性到定量的转化,定量和定性指标的分级及赋值[1-3]情况见表1和表3.

根据文献[13]所建立的直线型测度函数,构建各预警指标的测度函数

uijk=

u(xij∈Ck)

,以表1中各定量指标的分级数据为基础,构造年平均降雨量、单轴抗压强度、节理裂隙密度等9个定量指标的单指标测度函数,如图1~图9所示。

3 工程实例

选取某地区的轨道交通隧道工程为工程实例,应用文中所建立的岩溶隧道开挖塌方风险预警模型对其塌方危险性进行分析,以验证该预警

模型的可行性。该地区年平均降雨量为1 130 mm,隧道工程位于岩溶区,最大埋深约160 m.地质条件:上覆第四系全新统坡残积黏土;下伏基岩为三叠系浅灰至灰白色中厚厚层状白云岩,灰岩偶夹泥质白云岩。开挖方法:主要为上下台阶开挖法。衬砌:C35混凝土。仰拱填充、沟槽和喷射混凝土:C25混凝土。根据该隧道工程数据质料,各预警指标的参数值见表4.其中,各定性指标的取值根据表3中的分级标准进行量化。

将表4中岩溶隧道的定量指标值分别带入图1~图9相应的单指标测度函数中,得到各定量指标的未确知测度值,定性指标的取值见表1和表3.应用式(4)得到该岩溶隧道的单指标测度评价矩阵(u1jk)18×5,应用信息熵法确定各指标权重,由式(5)计算得到Vj,再由式(6)即可求得各评价指标的权重wj。(u1jk)18×5,Vj和wj的计算结果见表5.

根据表5,可得单指标测度评价矩阵(u1jk)18×5和指标权重wj,由式(7)即可得岩溶隧道开挖塌方风险的多指标综合未确知测度uik,见表6.

根据表6,可得该隧道开挖塌方风险属于各个预警等级的程度依次为:0.146 3,0.030 2,0.345 3,0.286 1,0.231 9.可见,该隧道开挖塌方风险属于Ⅲ级预警的程度最大,属于Ⅳ级、Ⅴ级预警的程度较小,属于Ⅰ级、Ⅱ级预警的程度最小。根据最大隶属度原则,该隧道开挖风险预警等级为Ⅲ级。为减少评价结果的误判,引入置信度识别准则代替最大隶属度识别准则判定预警等级。

根置信度评价准则式(8),取置信度λ=0.5,对隧道开挖塌方风险预警等级进行判定。从小到大,则有k0=0.146 3+0.030 2+0.345 3=0.521 7>λ,即隧道开挖塌方风险预警等级为Ⅲ级;从大到小,则有k0=0.231 9+0.286 1+0.345 3=0.863 3>λ,隧道开挖塌方风险预警等级也为Ⅲ级。

由此可见,两次判别结果一致。因此,该岩溶隧道开挖塌方风险预警等级为Ⅲ级,即为橙色预警等级,说明隧道开挖过程中存在较大坍塌危险,隧道内部分工序仍可正常施工,但可能造成危害的工序应减慢施工进度,并应配备专职地质灾害安全员,对地质灾害进行不间断监测。隧道开挖相关部门应及时做好相应的应急预案及塌方防范措施。

根据工程实际情况,该区段在开挖过程中,确实存在一定的坍塌风险,例如:出现初期支护鼓出、侵限掉块、左侧拱腰水平位移偏大等现象,与评价结果较吻合。

4 结 论

1)针对岩溶隧道开挖塌方危险性评价中诸多影响因素的不确定性,应用未确知数学理论,建立基于未确知测度的岩溶隧道开挖塌方风险预警模型,利用信息熵理论计算各指标的权重;引入置信度识别准则进行预警等级判定,为岩溶隧道开挖塌方风险预警提供了较好的思路。

2)该方法将隧道开挖塌方风险预警的定性指标定量化和分级标准化,实现了定性指标和定量指标的共存,有效地解决了隧道开挖塌方危险性评价中诸多影响因素的不确定性问题。

3)以某岩溶区隧道工程为工程实例,对其开挖塌方风险进行预警,预警结果与工程实际情况较吻合,可为事故防范提供理论依据。该方法科学合理、简单高效,为岩溶隧道开挖塌方风险预警提供新的思路。

参考文献(References):

[1] 刘学增,俞文生.隧道稳定性评价与塌方预警[M].上海:同济大学出版社,2010.

[2]周冬军.岩溶隧道开挖稳定性评价及预测技术研究[D].成都:西南交通大学,2012.

ZHOU Dong-jun.A study on excavation stability evaluation and forecast of karst tunnel[D].Chengdu:Southwest Jiaotong University,2012.

[3]吳贤国,王洪涛,何 云.基于模糊物元的岩溶隧道开挖稳定性评价[J].中国安全科学学报,2018,28(1):99-104.

WU Xian-guo,WANG Hong-tao,HE Yun.Stability evaluation of excavation face of shield tunnel based on cloud model[J].China Safety Science Journal,2018,28(1):99-104.

[4]

王木群.岩溶对隧道工程的影响及岩溶处治技术研究[D].长沙:中南大学,2011.

WANG Mu-qun.Research on the influence on tunnel engineering and the treatment technology of karst[D].Changsha:Central South University,2011.

[5]Soliman E,Duddeck H,Ahrens H.Two and three-dimensional analysis of closely spaced double-tube tunnels[J].Tunneling & Underground Space Technology,1993,8(1):13-18.

[6]赵明阶,敖建华,刘绪华,等.岩溶尺寸对隧道围岩稳定性影响的模型试验研究[J].岩石力学与工程学报,2004,23(2):213-213.

ZHAO Ming-jie,AO Jian-hua,LIU Xu-hua,et al.Model testing research on influence of karst cave size on stability of surrounding rockmasses during tunnel construction[J].Chinese Journal of Rock Mechanics and Engineering,2004,23(2):213-213.

[7]

Mollon G,Dias D,Soubra A H.Rotational failure mechanisms for the face stability analysis of tunnels driven by a pressurized shield[J].International Journal for Numerical & Analytical Methods in Geomechanics,2011,35(12):1363-1388.

[8]

Ahmed M,Iskander M.Evaluation of tunnel face stability by transparent soil models[J].Tunnelling and Underground Space Technology,2012,27(1):101-110.

[9]Berthoz N,Branque D,Subrin D,et al.Face failure in homogeneous and stratified soft ground:Theoretical and experimental approaches on 1g EPBS reduced scale model[J].Tunneling and Underground Space Technology,2012(30):25-37.

[10]YANG Zi-han,ZHANG Ji-hua.Minimum safe thickness of rock plug in Karst tunnel according to upper bound theorem[J].Journal of Central South University,2016,23(9):2346-2353.

[11]馬 栋.深埋岩溶对隧道安全影响分析及处治技术研究[D].北京:北京交通大学,2012.

MA Dong.Study on impact mechanism of deep buried karst to tunnel safety and the treatment technique[D].Beijing:Beijing Jiaotong University,2012.

[12]刘敦文,贾昊燃,周唱晓,等.基于云模型的盾构隧道开挖面稳定性评价[J].北京交通大学学报,2019,43(3):43-49.

LIU Dun-wen,JIA Hao-ran,ZHOU Chang-xiao,et al.Stability evaluation of excavation face of shield tunnel based on cloud model.[J].Journal of Beijing Jiaotong University,2019,43(3):43-49.

[13]栾婷婷,谢振华,吴宗之,等.基于未确知测度理论的排土场滑坡风险评价模型[J].中南大学学报(自然科学版),2014,45(5):1612-1617.

LUAN Ting-ting,XIE Zhen-hua,WU Zong-zhi,et al.Risk evaluation model of waste dump landslide based on uncertainty measurement theory[J].Journal of Central South University(Science and Technology),2014,45(5):1612-1617.

[14]王光远.未确知信息及其数学处理[J].哈尔滨建筑工程学院学报,1990,23(4):1-9.

WANG Guang-yuan.Uncertainty information and its mathematical treatment[J].Journal of Harbin University of Civil Engineering and Architecture,1990,23(4):1-9.

[15]彭 康,李夕兵,王世鸣,等.基于未确知测度模型的尾矿库溃坝风险评价[J].中南大学学报(自然科学版),2012,43(4):1447-1452.

PENG Kang,LI Xi-bing,WANG Shi-ming,et al.Optimization model of unascertained measurement for dam-break risk evaluation in tailings dams[J].Journal of Central South University(Science and Technology),2012,43(4):1447-1452.

[16]阳富强,吴 超.基于未确知测度理论的硫化矿石爆堆自燃危险性评价[J].中南大学学报(自然科学版),2010,41(6):2373-2380.

YANG Fu-qiang,WU Chao.Risk assessment on spontaneous combustion of sulfide ore dump in stope based on uncertainty measurement theory[J].Journal of Central South University(Science and Technology),2010,41(6):2373-2380.

[17]刘开第,吴和琴,庞彦军,等.不确定性信息数学处理及应用[M].北京:科学出版社,1999.

[18]翟友成,胡云世,廖小辉,等.基于熵权的隧道塌方风险非线性模糊评判方法[J].安全与环境学报,2016,16(5):41-45.

ZHAI You-cheng,HU Yun-shi,LIAO Xiao-hui,et al.Renovated nonlinear fuzzy assessment method for forecasting the tunnel collapse risk based on the entropy weighting[J].Journal of Safety and Environment,2016,16(5):41-45.

[19]江 新,杜海文,袁 軒,等.神经网络范式下硐室群施工安全风险预警研究[J].中国安全科学学报,2018,28(2):181-186.

JIANG Xin,DU Hai-wen,YUAN Xuan,et al.Study on early warning of safety risk in underground cavern group construction under neural network paradigm[J].China Safety Science Journal,2018,28(2):181-186.

[20]马洪琪,周 宇,和孙文.中国水利水电地下工程施工[M].北京:中国水利水电出版社,2011.

[21]中华人民共和国铁道部.铁路隧道设计规范(TB10003—2005)[S].北京:中国铁道出版社,2005.

Peoples Republic of China Railway Ministry.Railway tunnel design specification(TB10003—2005)[S].Beijing:China Railway Press,2005.

[22]中华人民共和国铁道部.高速铁路隧道工程施工质量验收标准(TB10753—2010)[S].北京:中国铁道出版社,2010.

Peoples Republic of China Railway Ministry.Inspection standard for construction quality of high-speed railway tunnel(TB10753—2010)[S].Beijing:China Railway Press,2010.

[23]中华人民共和国铁道部.高速铁路隧道工程施工技术指南[S].北京:中国铁道出版社,2011.

Peoples Republic of China Railway Ministry.High-speed railway tunnel engineering construction technical guide[S].Beijing:China Railway Press,2011.