基于七量子信道的三方受控联合远程态制备

2020-05-06 09:16锁珍
科学与财富 2020年4期

锁珍

摘 要:在本篇论文中,我们提出了一种较为新颖的方案,以七比特量子纠缠作为信道,三方两两联合,在控制粒子的帮助下为第三方制备单量子比特态。该方案与双向远程态制备及早期的远程态制备方案相比,具有更好的安全性和较高的灵活性。在文章的最后,对制备效率进行了计算,并进行了相应的讨论说明。

关键词:三方受控远程态制备;七量子纠缠态;联合态制备

1.引言

量子纠缠是量子信息中极为重要的资源,在量子通信中起着不可或缺的作用[1-4]。纠缠特性已在各种量子信息处理中得到广泛应用,如量子密钥分配[5-6], 量子密集编码[7], 量子安全直接通信[8-9], 超纠缠[10]和量子计算[11-13]等。其中,量子纠缠的最著名的应用之一是远程态制备(RSP)。它最初是由H.K. Lo等人提出的[14],在RSP中,对于发送者而言,要制备的目标态的所有信息都是已知的,这就不得不考虑信息的安全性。在RSP中,由于发送者知道目标态的所有信息而可能引起信息泄漏,为避免信息泄漏,受控的RSP被提出受控远程态制备(CRSP)[15-21]和联合远程态制备(JRSP)[22–25]。在CRSP中,引入了控制粒子,在信息的传递过程中,只有得到了控制粒子的批准,信息才能有效的传递下去,这样使得信息的安全性得到了有效的提升。在JRSP中,涉及了两个以上的发送者,要发送的信息被秘密地分成了几部分,这就意味着单个发送者和子组都无法得出所需状态的信息。这使得信息传递的安全性大大提升。在这之后,许多修改后的RSP方案被提出,如确定性的远程态制备(DRSP) [26–28]和联合控制RSP(JCRSP) [29-30]。

然而,以上这些RSP方案只是单向远程制备。之后由Cao等人设计了一种受控的双向远程态制备(CBRSP)协议[31]。在他们的方案中,两个相距甚远的参与者可以确定并同时地交换彼此的单量子态。随后出现了一些在不同信道下进行的双方受控远程态制备,如五比特团簇态[31], 六比特纠缠态[32], 七比特纠缠态[33]或八比特纠缠态[34]。本文将以七比特纠缠态作为量子通道,在第四方的控制下实现三方两两联合远程态制备。

本文提出了一种较为新颖的远程态制备的方案,方案中有四个参与者(Alice, Bob, Charlie and Duke),选择了一个七量子纠缠态作为此次的量子信道,在Duke的控制下来完成单量子态的三方两两联合远程制备。最后,计算了该方案的效率并进行了讨论。

2.三方受控远程态制备

方案中有四个合法参与者:Alice,Bob,Charlie和Duke。在参与者Duck的控制下,Alice和Charlie联合为Bob制备了一个单量子态;Bob和Alice联合为Charlie制备了一个单量子态;Bob和Charlie联合为Alice制备了一个单量子态。假设Alice和Charlie想要为Bob制备一个单量子态,可以描述为:

在Fig2中,我们列出了Alice、Bob、Charlie和Duke所有可能的测量结果。同时,Duke分别告诉Alice, Bob和Charlie测量的结果,并進行相应的恢复操作,得到目标态。

3.讨论与总结

本文提出了一种通过七量子态实现三方控制的联合远程制备单个粒子态的方案。采用单量子测量和单量子匹配的方法,使方案更加灵活. 此外,还需要评估量子资源共享方案的利用效率,通常使用以下公式:

其中qs 表示共享量子信息的比特数, qu表示使用的量子比特数。本文以7量子位量子态作为信道,引入3个辅助粒子,所以 qs=10。Alice, Bob和Charlie分别为一方准备了一个量子态,所以 qu=3。由此可见,该方案的最终利用效率为

现在讨论一下本方案的安全性。方案中,Alice、Bob和Charlie可以在Duke的帮助下同时准备一个单量子态。该协议只需要一次CNOT操作和两次单量子态测量。Alice和Charlie可以使用粒子2和辅助粒子γ1成功地为Bob制备单量子态。Bob和Alice可以为Charlie制备一个单量子态,由粒子4和辅助粒子γ2完成。而Charlie和Bob需要使用粒子 6和γ3为Alice制备一个单量子态。当然,所有操作都需要监控者Duke的帮助。当且仅当监控者Duck分别对相应的粒子进行适当的单量子测量时CRSP方案才能成功实现。Duke的参与大大提高了协议的安全性。

致谢 本研究由国家自然科学基金资助 苏州市重点产业技术创新项目(61104002)教育部系统控制与信息处理重点实验室(批准号:Scip201804)资助的课题

参考文献:

[1]Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000).

[2]Lo HK. Classical-communication cost in distributed quantum-information processing: A generalization of quantum-communication complexity - art. no. 012313[J].Physical review, A. Atomic, molecular, and optical physics,2000,62(1):052313-1-052313-8.

[3]Bennett C H , Wiesner S J . Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states[J]. Physical Review Letters, 1992, 69(20):2881-2884.

[4]Bennett, C.H., Brassard, G., Grepeau, C., Jozsa, R., Peres, A. Wootters,W.K.: Teleporting an unknownquantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895(1993).

[5]Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661 (1991).

[6]Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bells theorem. Phys. Rev.Lett. 68, 557 (1992).

[7]Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996).

[8]Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A. 65, 032302 (2002).

[9]Deng, F.G., Long, G.L., Liu, X.S.:Two-step quantum direct communication protocol using theEinstein Podolsky-Rosen pair block. Phys. Rev. A. 68, 042317 (2003).

[10]Ren, B.C., Du, F.F., Deng, F.G.: Hyper entanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A 88, 012302 (2013).

[11]Long, G.L., Xiao, L.: Parallel quantum computing in a single ensemble quantum computer. Phys. Rev. A 69(5), 052303 (2004).

[12]Feng, G., Xu, G., Long, G.: Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110(19), 190501 (2013).

[13]Wei, H.R., Deng, F.G.: Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities. Phys. Rev. A. 87(2), 022305 (2013).

[14]Bennett, C.H., Brassard, G., Crpeau, C., Jozsa, R., Peres, A.Wootters,W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 13-29 (1993).

[15]Peters, N.A., Barreiro, J.T., Goggin, M.E., Wei, T.C., Kwiat, P.G.: Remote state preparation: arbitrary remote control of photon polarization. Phys. Rev. Lett. 94(15), 150502 (2005).

[16]Chen, X.B., Ma, S.Y., Su, Y., Zhang, R., Yang, Y.X.: Controlled remote state preparation of arbitrary two and three qubit states via the Brown state. Quant. Inf. Process. 11(6), 1653-1667 (2012).

[17]Dakic, B., Lipp, Y.O., Ma, X., Ringbauer, M., Kropatschek, S., Barz, S., Paterek, T., Vedral, V., Zeilinger, A.: Quantum discord as resource for remote state preparation. Nat. Phys. 8(9), 666-670 (2012).

[18]Liu, L.L., Hwang, T.: Controlled remote state preparation protocols via AKLT states. Quantum Inf. Process. 13(7), 1639-1650 (2014).

[19]Wang, C., Zeng, Z., Li, X.H.: Controlled remote state preparation via partially entangled quantum channel. Quantum Inf. Process. 14(3), 1077-1089 (2015).

[20]He, Y.H., Lu, Q.C., Liao, Y.M., Qin, X.C., Qin, J.S., Zhou, P.: Bidirectional controlled remote implementation of an arbitrary single qubit unitary operation with EPR and cluster states. Int. J. Theor. Phys. 54(5), 1726-1736 (2015).

[21]Li, Z., Zhou, P.: Probabilistic multiparty-controlled remote preparation of an arbitrary m-qudit state via positive operator-valued measurement. Int. J. Quantum Inf. 10(05), 1250062 (2012).

[22]Chang, L.W., Zheng, S.H., Gu, L.Z., Xiao, D., Yang, Y.X.: Joint remote preparation of an arbitrary five-qubit Brown state via non-maximally entangled channels. Chin. Phys. B. 9, 91-99 (2014).

[23]Peng, J.Y., Luo, M.X., Mo, Z.W.: Joint remote state preparation of arbitrary two-particle states via GHZ-type states. Quantum Inf. Process. 12(7), 2325-2342 (2013).

[24]Li, X., Ghose, S.: Optimal joint remote state preparation of equatorial states. Quantum Inf. Process. 14(12), 4585-4592 (2015).

[25]Yu, R.F., Lin, Y.J., Zhou, P.: Joint remote preparation of arbitrary two-and three-photon state with linear-optical elements. Quantum Inf. Process. 15(11), 4785-4803 (2016).

[26]Leung, D.W., Shor, P.W.: Oblivious remote state preparation. Phys. Rev. Lett. 90(12), 127905 (2003).

[27]Wu,W., Liu,W.T., Chen, P.X., Li, C.Z.: Deterministic remote preparation of pure and mixed polarization states. Phys. Rev. A. 81(4), 042301 (2010).

[28]Li, J.F., Liu, J.M., Feng, X.L., Oh, C.H.: Deterministic remote two-qubit state preparation in dissipative environments. Quantum Inf. Process. 15(5), 2155-2168 (2016).

[29]Wang, D., Ye, L.: Multiparty-controlled joint remote state preparation. Quantum Inf. Process. 12(10), 3223-3237 (2013).

[30]An, N.B., Bich, C.T.: Perfect controlled joint remote state preparation independent of entanglement degree of the quantum channel. Phys. Lett. A. 378(48), 3582-3585 (2014).

[31]Cao, T.B., Nguyen, B.A.: Deterministic controlled bidirectional remote state preparation. Adv. Nat. Sci. Nanosci. 5(1), 015003 (2013).

[32]Zhang, D., Zha, X., Duan, Y., Yang, Y.: Deterministic controlled bidirectional remote state preparation via a six-qubit entangled state. Quantum Inf. Process. 15(5), 2169-2179 (2016).

[33]Zhang, D., Zha, X., Duan, Y., Wei, Z.H.: Deterministic controlled bidirectional remote state preparation via a six-qubit maximally entangled state. Int. J. Theor. Phys. 55(1), 440-446 (2016).

[34]Peng, J.Y., Bai, M.Q., Mo, Z.W.: Bidirectional controlled joint remote state preparation. Quantum Inf. Process. 14(11), 4263-4278 (2015)