辅助方程法求变系数KdV方程组的精确解

2020-04-29 08:51刘韡付紫硕田陈

刘韡 付紫硕 田陈

摘要:求解变系数非线性发展方程是数学、物理、力学等诸多自然科学研究的重要领域。文中创建辅助方程法,可求多种常系数与变系数非线性发展方程的精确解。以变系数非线性KdV方程组为例,在仅要求变系数可积的情形下,获得了一系列新的精确解。

关键词:辅助方程法;变系数KdV方程组;精确解

中图分类号:O175.29

DOI:10.16152/j.cnki.xdxbzr.2020-06-011

The exact solutions to coupled KdV equations with

variable coefficients by auxiliary equation method

LIU Wei,  FU Zishuo, TIAN Chen

(School of Science, Xi′an University of Architecture and Technology, Xi′an 710055, China)

Abstract: Solving nonlinear evolution equations with variable coefficients is an important field in mathematics, physics, mechanics and many other fields in natural sciences. An auxiliary equation method is proposed, which can be used to solve many kinds of nonlinear evolution equations with constant and variable coefficients. Taking the coupled KdV equations with variable coefficients as an example, a series of new exact solutions are obtained under the condition that only variable coefficients are required to be integrals.

Key words: auxiliary equation method; KdV equations with variable coefficients; exact solution

非线性发展方程在数学、物理、流体力学等许多领域中有广泛的应用,是当前学术界非常关注的研究课题。在求解非线性发展方程问题中,众多学者在常系数方面做了大量的工作,形成了一系列行之有效的方法[1-9]。也有一些学者对变系数非線性发展方程展开研究,同样取得了良好的成果[10-13]。

4 结论

本文创建辅助方程,借助二项微分式的有关性质,应用到含变系数非线性偏微分方程组的求解中。以变系数非线性KdV方程组为例,在对变系数f (t)、g(t)仅要求可积又各自独立的情形下,而未如文献[15]或文献[16]所要求g (t)=c f (t),c为常数,或类似条件,获得一系列新的精确解。本文所创建的方法方便简洁,适用性强,对多种常系数与变系数非线性方程适用,如KP 方程、薛定谔方程等。

参考文献:

[1] 莫嘉琪. 一类扰动非线性发展方程的孤立子同伦映射行波渐近解[J]. 安徽师范大学学报(自然科学版), 2017, 40(3): 205-209.

MO J Q. The travelling wave asymptotic solution of soliton for homotopic mapping to a class of disturbed nonlinear evolution equation [J].Journal of Anhui Normal University (Natural Science), 2017, 40(3):205-209.

[2] FENG Y H, WU Q K, XU Y H, et al. The singularly perturbed problems for nonlinear nonlocal disturbed evolution equations with two parameters[J].Chinese Journal of Engineering Mathematics, 2016, 33(4): 419-427.

[3] 冯依虎, 陈贤峰, 莫嘉琪. 一类非线性双曲型发展方程的孤子解[J]. 应用数学和力学, 2015,36(10): 1076-1084.

FENG Y H, CHEN X F, MO J Q. The soliton solutions to a class of nonlinear hyperbolic evolution equations[J].Applied Mathematics and Mechanics, 2015, 36(10): 1076-1084.

[4] 杜增吉, 莫嘉琪. 一类扰动发展方程近似解[J]. 物理学报, 2012, 61(15): 338-342.

DU Z J, MO J Q. Approximate solution for a class of the disturbed evolution equation [J]. Acta Physica Sinica, 2012, 61(15): 338-342.

[5] HEREMAN W, BANERJEE P P, KORPEL A, et al. Exact solitary wave solutions of nonlinear evolution and wave equations using a direct algebraic method [J]. Journal of Physics A: Mathematical and General,1986, 19(5):607-628.

[6] PARKES E J, DUFFY B R, ABBOTT P C. The Jacobi elliptic-function method for finding periodic-wave solutions to nonlinear evolution equations[J].Physics Letters A, 2002, 295(5/6):280-286.

[7] HU X B, WANG D L, QIAN X M. Soliton solutions and symmetries of the 2+1 dimensional Kaup-Kupershmidt equation[J]. Physics Letters A, 1999, 262(6):409-415.

[8] FU Z T, LIU S K, LIU S D, et al. New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations[J].Physics Letters A, 2001, 290(1/2):72-76.

[9] 徐桂琼, 李志斌. 构造非线性发展方程孤波解的混合指数方法[J]. 物理学报, 2002, 51(5): 946-950.

XU G Q, LI Z B. Solitary wave solutions of a nonlinear evolution equation using mixed exponential method [J]. Acta Physica Sinica, 2002, 51(5):946-950.

[10]刘式适, 付遵涛, 刘式达, 等. 变系数非线性方程的Jacobi 椭圆函数展开解[J]. 物理学报, 2002, 51(9): 1923-1926.

LIU S K, FU Z T, LIU S D, et al. Jacobi elliptic function expansion solution to the variable coefficient nonlinear equations[J]. Acta Physica Sinica, 2002, 51(9): 1923-1926.

[11]文双春,徐文成,郭旗,等.变系数非线性Schrdinger方程孤子的演化[J].中国科学(A辑),1997, 27(10): 949-953.

WEN S C, XU W C, GUO Q, et al. The soliton evolution to the variable coefficient nonlinear Schrdinger equation[J]. Science in China (Series A), 1997, 27(10): 949-953.

[12]阮航宇,陳一新. 寻找变系数非线性方程精确解的新方法[J]. 物理学报, 2000, 49(2): 177-180.

RUAN H Y, CHEN Y X. A new method to solve nonlinear variable coefficient equation[J]. Acta Physica Sinica, 2000, 49(2): 177-180.

[13]YAN Z Y, ZHANG H Q. Similarity reductions for 2+1-dimensional variable coefficient generalized kadomtsev-petviashvili equation[J].Applied Mathematics and Mechanics (English Edition),2000,21(6):645-650.

[14]张解放,陈芳跃. 截断展开方法和广义变系数KdV方程新的精确类孤子解[J]. 物理学报, 2001, 50(9): 1648-1650.

ZHANG J F, CHEN F Y. Truncated expansion method and new exact soliton-like solution of the general variable coefficient KdV equation[J].Acta Physica Sinica, 2001, 50(9): 1648-1650.

[15]张金良, 胡晓敏, 王明亮. 变系数KdV方程组的Bcklund变换及其精确解[J]. 杭州电子工业学院学报,2002, 22(1): 59-61.

ZHANG J L, HU X M, WANG M L. Bcklund transformations and solitary wave exact solutions with variable velocity to coupled KdV equations with variable coefficients[J]. Journal of Hangzhou Institute of Electronic Engineering, 2002, 22(1): 59-61.

[16]XU G Q, LI Z B. Explicit solutions to the coupled KdV equations with variable coefficients[J].Applied Mathematics and Mechanics, 2005, 26(1): 101-107.

(编 辑 张 欢)