基于混合式断路器的直流电网保护方案研究

2020-04-22 06:00金涛苏见燊张明扬
电机与控制学报 2020年3期
关键词:保护

金涛 苏见燊 张明扬

摘 要:基于模块化多电平换流器(modular multilevel converter, MMC)的高压直流输电(highvoltage directcurrent, HVDC)将是未来直流电网重要发展方向之一。相比电缆输电,长距离架空线输电成本低,而直流故障隔离是在架空线路上应用柔性直流输电的棘手问题。首先,研究混合高压直流断路器的直流故障处理方案,提出基于直流电网的3种保护方案,包括线路差动保护,母线差动保护和后备保护;其次,结合实际工程中的现有技术,论述选取参数的原则,采用架空线输电方式搭建了具有混合直流断路器的多端直流电网仿真平台并进一步验证了所提出方案的可行性和有效性。最后,通过仿真分析表明,混合高压直流断路器能够在数ms 之内断开故障电流,所提出的3种保护方案能够自动、快速、有选择性地隔离故障,且无故障部分正常运行。

关键词:混合高压直流断路器;直流电网;保护;模块化多电平换流器

DOI:10.15938/j.emc.2020.03.013

中图分类号:TM 72文献标志码:A文章编号:1007-449X(2020)03-0106-08

Abstract:Highvoltage directcurrent (HVDC) based on modular multilevel converter (MMC) is important in the development of DC grid. Compared with cable transmission, longdistance overhead line transmission costs are low, and DC fault isolation is an important issue of applying HVDC power transmission over overhead lines. This paper studied the DC fault handling scheme of hybrid HVDC breakers and proposed three protection schemes based on DC grid, including DC line protection, DC bus protection and backup protection. Based on the existing technologies in actual projects, the principle of selecting parameters was discussed. A multiterminal DC power grid simulation platform with a hybrid DC circuit breaker was established by using overhead line transmission, and the feasibility and effectiveness of the proposed scheme were further verified. The results show that the hybrid highvoltage circuit breaker can break the fault current within several milliseconds. The three proposed protection schemes realize automatic, rapid and selective faults isolation, ensuring that other nonfaulty components return to normal operation.

Keywords:hybrid HVDC breakers; DC grid; protection; modular multilevel converter

0 引 言

基于MMCHVDC輸电具有显著优势,MMC的子模块可分为半桥型、全桥型、双箝位型等,能够比较容易地实现高电压或高功率输送。与两电平VSC相比,MMC拓扑结构具有众多优点,如低谐波,低损耗,运行效率高,模块化程度高,输出特性好,可拓展性强等,是新一代电压源换流器中的佼佼者[1-5]。

由于半桥型子模块器件少且成本低,目前大部分投运的工程采用半桥型子模块。而不具备直流故障自清除能力的半桥型子模块,只能采用电缆进行输电,从而来降低线路故障率。比如,厦门示范工程、南澳工程和上海南汇工程等。然而在直流电网中,电缆输电造价高,经济效益差,阻碍了直流电网的发展。相比电缆输电,长距离架空线输电成本低[6-8]。所以,采用架空线路进行长输电并具备故障切断清除能力的直流电网技术,显得特别重要。

目前,国家电网正在建设的张北柔性直流电网采用架空线传输功率,发生线路故障的概率大。与交流电网相比,直流电网阻尼很小,发生线路故障时,故障电流可在数ms内激增到几十kA[9-11]。直流故障迅速切断是当前研究利用架空线路进传输的柔性直流输电亟待解决的困难。目前对直流故障隔离方法大致可分为3种思路[12-14]:1) 利用交流断路器进行直流故障隔离是目前柔性直流输电工程所普遍采用的直流故障保护方案。通过交流断路器隔离故障存在响应速度慢且可靠性低等问题。2) 基于全桥子模块或箝位双子模块的MMC具备直流故障穿越能力,但所需功率半导体器件多且损耗高。3) 利用高压直流断路器实现故障隔离的方案是最直接有效的手段,上述3种方案中,利用高压直流断路器隔离故障是国际大电网会议推荐的直流电网保护方案[15-17]。

文献[18]初步探究了柔性电网线路及母线保护方案,但未涉及后备保护相关研究。正在建设中的张北柔性直流电网,故障处理方案是选择采用半桥型子模块结构和混合高压直流断路器方案[19-20]。

本文首先研究混合高压直流断路器的直流故障处理方案,提出直流电网保护方案,即3种保护策略,结合3种保护方案进行动作参数选取原则分析,在仿真平台上,验证所提出基于混合式断路器的直流电网保护方案的可行性和有效性。

1 直流电网保护方案

与交流电网相比,直流电网阻尼更小,故障电流di/dt更大。如图1所示,当发生双极短路时,故障电流主要来源于:一是大量不具备直流故障清除能力的半桥型子模块电容迅速放电产生的直流分量;二是交流系统注入的三相交流分量[6]。

3 结 论

1)混合高压直流断路器将是未来直流电网中重要设备之一。混合式断路器能够在5 ms之内断开故障电流,而不中断到其他线路直流功率输送。

2)本文提出直流故障隔离的3种保护方案,即3种保护策略:线路差动保护、母线差动保护和后备保护,能够及时、准确地检测直流输电系统故障类型,自动、快速、有选择性地将故障从直流电网中切除,保证其他无故障部分迅速恢复正常运行,系统处于动态平衡。

3)准确快速的直流电网仿真技术是发展直流电网重要技术之一,而本文所搭建的直流电网存在问题是仿真速度需要进一步提高,研究简化仿真模型将是下一阶段的工作。

参 考 文 献:

[1] 温家良,葛俊,潘艳,等. 直流电网用电力电子器件发展与展望[J].电网技术,2016,40(3):663.

WEN Jialiang, GE Jun, PAN Yan, et al. Development and expectation of power electronic devices for DC grid[J]. Power System Technology, 2016, 40(3): 663.

[2] 姚良忠,吴婧,王志冰,等. 未来高压直流电网发展形态分析[J].中国电机工程学报,2014,34(34): 6007.

YAO Liangzhong, WU Jing, WANG Zhibing, et al. Pattern analysis of future HVDC grid development[J]. Proceedings of the CSEE,2014,34(34): 6007.

[3] 吴亚楠,吕铮,贺之渊,等. 基于架空线的直流电网保护方案研究[J].中国电机工程学报,2016, 36(14): 3726.

WU Yanan, LU Zheng, HE Zhiyuan, et al. Study on the protection strategies of HVDC grid for overhead line application[J].Proceedings of the CSEE,2016, 36(14):3726.

[4] 賀之渊,刘栋,庞辉. 柔性直流与直流电网仿真技术研究[J].电网技术,2018,42(1):1.

HE Zhiyuan, LIU Dong, PANG Hui. Research of simulation technologies of VSCHVDC and DC grids[J]. Power System Technology,2018,42(1):1.

[5] 吴杰, 王志新. 混合直流输电系统功率同步控制研究[J].电机与控制学报, 2017, 21(7):1.

WU Jie, WANG Zhixin. Power synchronization control of hybrid HVDC[J]. Electric Machines and Control,2017, 21(7):1.

[6] 郭晓茜,崔翔,齐磊. 架空线双极MMCHVDC系统直流短路故障分析和保护[J].中国电机工程学报,2017,37(8):2177.

GUO Xiaoqian, CUI Xiang, QI Lei. DC shortcircuit fault analysis and protection for the overhead line bipolar MMCHVDC system[J]. Proceedings of the CSEE,2017, 37(8):2177.

[7] 刘高任,许烽,徐政,等. 适用于直流电网的组合式高压直流断路器[J].电网技术,2016, 40(1): 70.

LIU Gaoren, XU Feng, Xu Zheng, et al. An assembled HVDC breaker for HVDC grid[J]. Power System Technology, 2016,40(1):70.

[8] MAJUMDER R, AUDDY S, BERGGREN B, et al. An alternative method to build DC switchyard with hybrid DC breaker for DC grid[J]. IEEE Transactions on Power Delivery,2016,32(2):713.

[9] REN Y, YANG X, ZHANG F,et al. A compact gate control and voltagebalancing circuit for series connected SiC MOSFETs and its application in a DC breaker[J]. IEEE Transactions on Industrial Electronics,2017, 64(10):8299.

[10] 孙栩,曹士冬,卜广全,等. 架空线柔性直流电网构建方案[J].电网技术,2016,40(3):678.

SUN Xu, CAO Shidong, BU Guangquan, et al. Construction scheme of overhead line flexible HVDC grid[J]. Power System Technology,2016, 40(3): 678.

[11] HAJIAN M, ZHANG L, JOVCIC D.DC transmission grid with lowspeed protection using mechanical DC circuit breakers[J]. IEEE Transactions on Power Delivery, 2015,30(3):1383.

[12] 江斌开, 王志新. 基于VSCMTDC的平均值建模与控制策略[J]. 电机与控制学报, 2018(3):1.

JIANG Binkai, WANG Zhixin. Averagevalue modeling and control strategy of VSCMTDC[J]. Electric Machines and Control, 2018(3):1.

[13] 魏晓光,高冲,罗湘,等. 柔性直流输电网用新型高压直流断路器设计方案[J].电力系统自动化,2013, 37(15): 95.

WEI Xiaoguang, GAO Chong, LUO Xiang, et al. A novel design of highvoltage DC circuit breaker in HVDC flexible transmission grid[J]. Automation of Electric Power Systems, 2013, 37(15): 95.

[14] DESCLOUX J, RAISON B, CURIS J B, Protection strategy for undersea MTDC grids[C]//IEEE Power Tech, Grenoble, 2013: 1-6.

[15] MOKHBERDORAN A, GOMISBELLMUNT O, SILVA N, et al. Current flow controlling hybrid DC circuit breaker[J]. IEEE Transactions on Power Electronics, 2018, 33(2): 1323.

[16] LIN W, JOVCIC D, NGUEFEU S, et al. Modelling of highpower hybrid DC circuit breaker for gridlevel studies[J]. IET Power Electronics, 2016, 9(2): 237.

[17] 武健, 王蕊, 張彩红,等. 并联型MMCMTDC系统直流故障特性分析及保护策略[J].电机与控制学报, 2016, 20(9):103.

WU Jian, WANG Rui, ZHANG Caihong, et al. DC fault analysis and protection design in shunt modular multilevel based MTDC system[J]. Electric Machines and Control, 2016, 20(9):103.

[18] 彭发喜, 汪震, 邓银秋,等. 混合式直流断路器在柔性直流电网中应用初探[J].电网技术, 2017, 41(7):2092.

PENG Faxi, WANG Zhen, DENG Yinqiu, et al. Potentials of Hybrid HVDC Circuit Breakers′ Application to MMCHVDC Grid[J]. Power System Technology, 2017, 41(7): 2092.

[19] JAMSHIDIFAR A, JOVCIC D. Design. Modeling and control of hybrid DC circuit breaker based on fast thyristors[J]. IEEE Transactions on Power Delivery, 2017, 33(2): 919.

[20] 丁骁,汤广福,韩民晓,等. 混合式高压直流断路器型式试验及其等效性评价[J]. 电网技术,2018, 42(1): 72.

DING Xiao, TANG Guangfu, HAN Minxiao, et al. Design and equivalence evaluation of type test for hybrid DC circuit breaker[J]. Power System Technology, 2018, 42(1): 72.

(编辑:贾志超)

猜你喜欢
保护
少数民族文化艺术元素在网页设计中的运用探讨
洛阳文化遗产保护与利用探讨
基于Web的非物质文化遗产土族盘绣电子商务平台的设计与实现
传统村落的保护与利用方式初探
反渗透长期停用保护方法的探索