摘 要:在二维或三维光滑有界区域中,考虑一类微极流体方程组的第一边值问题,在外力项的某一范数适当小的条件下,用不动点定理证明了当指数p>1时方程组强解的存在唯一性.
关键词:微极流体方程;强解;存在唯一性
中图分类号:O175.2 文献标识码:A 文章编号:
參考文献
[1] Eringen A C. Simple microfluids[J]. International Journal of Engineering Science,1964,2(2):205-217.
[2] M?alek J,Neˇcas J,Rokyta M,Ru˙ˇziˇcka M. Weak and measure-valued solutions to evolutionary partial differential equations[M]. Applied Mathematics and Mathematical Computation,1996.
[3] Bellout H, Bloom F, Neˇcas J. Young measure-valued solutions for non-newtonian incompressible fluids[J]. Communications in Partial Differential Equations,1994,19(11-12):1763-1803.
[4] Diening L,Ru˙ˇziˇcka M. Strong solutions for generalized Newtonian fluids[J]. Journal of Mathematical Fluid Mechanics,2005,7(3):413-450.
[5] Berselli L C,Diening L,Ru˙ˇziˇcka M. Existence of strong solutions for incompressible fluids with shear dependent viscosities[J]. Journal of Mathematical Fluid Mechanics,2010,12(1):101-132.
[6] M?alek J,Neˇcas J,Ru˙ˇziˇcka M. On weak solutions to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains:the casa p 2[J]. Advances in Difference Equations,2001,6(3):257-302.
[7] Amman H. Stability of the rest state of viscous incompressible fluid[J]. Archive for Rational Me- chanics and Analysis,1994,126(3):231-242.
[8] Bothe D,Pruss J. Lp-theory for a class of non-Newtonian fluids[J]. SIAM Journal on Mathematical Analysis,2007,39(2):379-421.
[9] Galdi G P. An introduction to the mathematical theory of the Navier-Stokes Equations[M]. New York:Springer,1994.
[10] Arada N. A note on the regularity of flows with shear-dependent viscosity[J]. Nonlinear Analysis:Theory,Methods & Applications,2012,75(14):5401-5415.
[11] Kreml O, Pokorny? M. On the local strong solutions for the FENE dumbbell model[J]. Discrete Contin. Dyn. Syst. Ser. S,2010,3(2):311-324.
[12] SUN Yongzhong,WANG Chao,ZHANG Zhifei. A Beale-Kato-Majda blow-up criterion for the 3-D compressible Navier-Stokes equations[J]. Journal de Math?ematiques Pures et Appliqu?ees,2011,95(1):36-47.
作者简介;史伟伟(1994~),女,汉族:硕士研究生,从事偏微分方程的研究。