周 军,毕晓雅,李丽波,由天艳
碳点合成及用于检测汞离子的碳点荧光传感器研究进展
周 军,毕晓雅,李丽波,由天艳※
(1. 江苏大学现代农业装备与技术教育部重点实验室,镇江 212013;2. 江苏大学农业工程学院,镇江 212013)
汞离子(Hg2+)具有持久性、易迁移性、易富集性等特点,会严重破坏农作物的生长环境,影响农作物的发育,进一步威胁农产品的质量安全和人类身体健康。荧光法操作简便,灵敏度高。其中,荧光探针是影响荧光分析性能的关键因素。碳点(Carbon Dots,CDs)具有制备简单、荧光效率高、生物相容性好等优点,基于CDs构建的荧光传感器在农业信息感知领域引起了广泛的关注。该研究主要综述了基于生物质来源的CDs合成、基于CDs传感器的构建及其在农业传感领域的应用。着重介绍了基于CDs构建的荧光猝灭型、荧光增强型、比率型荧光传感器在Hg2+检测方面的应用及研究进展,总结了不同分析模式中所用的探针材料、实际样品及检测Hg2+的分析性能情况,并对比了不同分析模式的优缺点。最后,分析了基于CDs构建的荧光传感器在农业传感领域的瓶颈问题及发展趋势,指出开发便携式设备实现Hg2+或多组分的同时、快速、可视化检测是本领域的发展方向。
传感器;荧光;汞;碳点;比率荧光;农业环境
近年来,随着工业化、农业现代化及城镇化进程的加快,大量重金属污染物通过“三废”的超标排放、生活垃圾的随意倾倒及农药化肥的违规施用等方式进入农业生产环境,造成了包括土壤污染、水污染和空气污染在内的重金属污染问题,这已成为世界性的难题[1-3]。重金属污染直接影响农作物生长发育,威胁农产品质量安全,引起农作物减产甚至死亡。“民以食为天,食以土为本”,因此,建立高灵敏、高选择性的重金属检测方法,对维护农业生产环境、保障农产品质量安全、保护人类身体健康具有重要意义。2006年Sun等[4]命名的“碳纳米点”(Carbon Dots,CDs /C-dots/ CQDs,本文统一为CDs)由于制备简单、荧光度高、生物相容性好、毒性低、水溶性好和表面易功能化等特性,在光电器件、生物成像、光热治疗、离子检测等领域得到了广泛的应用[5-7]。
基于CDs构建的荧光传感器在农药残留、农业生产环境中重金属离子和阴离子、农产品功能成分(维生素、葡萄糖、氨基酸等)与违禁添加剂(三聚氰胺等)检测等方面引起科研工作者的广泛关注[8-10]。例如,Zhan等[11]以新鲜樱桃番茄为原料,采用水热法合成了一种简单、经济、绿色的水溶性CDs。该CDs对农药除草剂氟乐灵具有较高的选择性,从而建立了基于CDs的氟乐灵检测平台。农田土壤样品经过预处理后,在其提取液中未检出氟乐灵,样品加标检测的回收率为94.6%~103.2%,相对标准偏差小于3.5%,显示该方法具有较高的分析精度。陆婷婷等[12]利用银纳米粒子与柠檬酸-乙二胺CDs之间的荧光共振能量转移效应,结合核酸适配体特异性识别乐果的特性,建立了乐果检测的适配体荧光传感器,实现对农药乐果的高灵敏度定量检测和可视化定性检测。刘鼎[13]采用微波法合成表面修饰氨基的CDs,发现农药精喹禾灵能显著地猝灭CDs的荧光强度。进一步将CDs与CdSe/ZnS量子点混合,混色溶液的颜色随着农药高效氯氰菊酯浓度的增加发生由红到蓝的变化,实现了可视化定性分析。此外,基于CDs构建的荧光传感器还可用于农产品中抗生素(如四环素、土霉素等)、激素类兽药(如己烯雌酚、瘦肉精等)的检测分析[8,10]。其原理大都是基于CDs与金属离子或相应适配体等形成复合体系,再与待测组分发生相互作用,荧光强度变化与待测组分浓度之间存在一定线性关联性,从而实现待测组分的定性定量分析。
重金属离子污染对人类健康和自然环境产生巨大的威胁,基于CDs构建的荧光传感器已广泛应用于土壤、河水等中Fe3+、Cu2+、Hg2+、Ag+、Al3+、Pb2+、Cd2+等金属离子的检测[6,14]。Hg2+是土壤污染中出现频率最高、毒性最强的重金属离子之一,可以通过食物链累积在人体内,具有持久性、易迁移性、富集性等特点,对内分泌系统、大脑、肾脏甚至神经系统产生严重损害[15]。在Hg2+检测方面,近年来,荧光传感技术由于具有无损检测、超灵敏、响应速度快等优点[16],其应用受到了广泛的关注,已经开发出部分传感器实现了Hg2+的灵敏、选择性检测[17-18]。以CDs为基础材料构建的荧光传感器得到更广泛的关注与应用[19-24]。有部分学者对用于检测Hg2+的荧光传感器进行了综述,分析了常见的Hg2+荧光探针,例如有机染料、上转换荧光材料、半导体量子点、碳纳米材料、贵金属纳米簇、金属配体配合物、金属有机框架材料等在Hg2+检测方面的研究进展[25-31],指出有机染料荧光探针存在易发生荧光漂白,半导体量子点探针存在毒性、疏水性、合成复杂等问题,上述各类荧光传感器在应用方面受到一定限制。设计和开发新型CDs荧光传感器受到科研人员越来越多的关注,有必要对CDs荧光传感器在Hg2+检测方面的研究进展进行进一步总结分析。因此,本研究对CDs合成生物质来源及用于Hg2+检测的CDs荧光传感器的开发进行综述,以期为CDs在农业领域的进一步应用提供依据。
CDs的合成方法主要分为自上而下法和自下而上法。自上而下法是以石墨、碳纳米管等大块碳材料为原料,通过激光剥离、电弧放电、电化学氧化等物理化学方法得到较小的碳纳米粒子,这类方法往往存在试验条件严苛、制备过程较复杂、部分仪器较为昂贵、荧光量子产率较低等问题;自下而上法则是以各种含碳有机小分子为前驱体,通过超声法、微波辅助加热法、水热法等实现小分子的碳化及进一步聚合最终形成CDs[8]。自下而上法中,研究者对使用天然物质合成CDs显得更加青睐,如图1所示,农作物(萝卜、香菇、生姜等蔬菜、西瓜皮、橘子汁等水果)、动物废弃物(羊毛、粪便等)、植物废弃物(秸秆、杂草、稻壳、花瓣、树叶等)、农产品废弃物(蛋壳膜、咖啡渣等)等均可以作为原材料[7,32-34]合成CDs。例如,孙英祥等[34]以桃花为碳源,通过水热法在最优条件下一步合成了荧光量子产率较高的水溶性荧光CDs,并证明了含碳水化合物的花都可以通过水热法一步制备CDs。这类CDs的合成来源丰富、成本较低、制备过程简单易控制、绿色环保、无二次污染。所制备的CDs荧光量子产率较高,具有良好的光学性能,表现出巨大的应用潜力。
图1 碳钠米点合成的生物质来源及基于其构建的荧光传感器在农业领域的应用
图2 用于检测Hg2 +的CDs荧光传感器的文献发表趋势图(数据来源:Web of Science)
如表1所示,本工作主要从荧光猝灭型单信号分析模式、荧光增强型单信号分析模式和比率型双信号分析模式等分析策略的角度[35],系统介绍了基于CDs构建的荧光传感器在重金属Hg2+检测方面的研究进展。
单信号分析模式包括荧光猝灭型和荧光增强型2种。
2.1.1 荧光猝灭型单信号分析模式
最初发展的基于CDs检测Hg2+的荧光传感体系大都是信号猝灭型传感器,其荧光强度由强到弱,荧光颜色由有到无。采用N、S、P等元素对CDs基体材料进行掺杂,通过调节电子特性和能隙可以获得具有特定功能或较好荧光特性的CDs复合材料。
Li等[36]利用微波辅助法,一步合成氮、硫双掺杂的碳点复合材料(N,S-CDs),基于荧光共振能量转移原理,实现了湖水和自来水中Hg2+的检测,具有较好的检测灵敏度和选择性。Wei等[44]采用水热法合成的N,S-CDs,具有粒径小、无定形结构和表面态独特的特点,N、S共掺杂增加了电子转移速率,改善了复合材料和Hg2+之间的配位作用,可对湖水样品Hg2+实现灵敏和选择性分析。
为了进一步提高精准度,Omer等[45]采用混合溶剂进行高荧光碳纳米点表面改性,纳米探针线性范围为50~800 nmol/L,Hg2+的最低检出限为10 nmol/L,他们对自来水和废水中的Hg2+进行了定量测定,具有较好的回收率。Xu等[19]以绿茶毛尖为碳源、辅以富含多羧酸和多羟基结构的抗坏血酸合成新型增强型CDs,相比于单独毛尖绿茶为碳源合成的CDs,形成更多聚合物结构,在Hg2+存在情况下,表现出更敏感性、特异性和稳定性的荧光性质。该体系对Hg2+的检出限为6.32 nmol/L,线性响应范围为0.2~60mol/L,可以有效检测废水、茶叶和大米等复杂样品中Hg2+含量,在食品安全、农产品质量和环境监测等方面有应用潜力。
江苏省地处“一带一路”和长江经济带的交汇点,社会经济发展水平较高,有丰富的旅游资源,体育产业规模逐步扩大,体育锻炼的人口比例逐步提高,具备发展体育小镇的资源条件。
表1 基于不同信号分析模式的碳点荧光传感器对Hg2 +检测的性能比较
此外,基于CDs构建“开—关—开”策略的荧光传感器用于Hg2+检测也引起了科技工作者的兴趣。其主要原理是Hg2+与碘离子(I-)、谷胱甘肽(Glutathione,GSH)、螯合剂二巯丁二酸(Dimercaptosuccinic Acid,DMSA)等具有较强的结合能力,可从CDs- Hg2+体系中去除Hg2+,恢复CDs的荧光信号。例如,Lqbal等[46]利用GSH能竞争性结合Hg2+,形成Hg2+-S或者Hg2+-N键,从而恢复N掺杂CDs的荧光性质,构建了一种同时检测Hg2+和GSH的荧光传感器。Hg2+和GSH的检出限分别达到20和40 nmol/L。Yan等[47]利用L-半胱氨酸(L-Cys)与Hg2+更强的配位能力,从CDs表面去除Hg2+,使CDs荧光恢复,该传感器成功应用于实际河水样品中Hg2+的定量分析。Pourreza等[48]在体系中添加DMSA后,由于其对Hg2+具有较高的螯合性,使得CDs荧光得到恢复。在优化条件下,Hg2+的线性响应范围为25~2500 nmol/L,检出限为6.3 nmol/L,该方法成功应用于环境污水和人血清中Hg2+的测定。
2.1.2 荧光增强型单信号分析模式
尽管可以通过元素掺杂、表面改性等方式改善荧光猝灭型传感器的分析性能,但是科学家为了进一步降低荧光猝灭型传感器光学背景高引起的灵敏度低、误判率高、选择性差的问题,开发了荧光增强型传感器。这种传感器荧光强度由弱到强,荧光颜色从无到有,光学背景较低,往往能够减少假阳性信号的发生,提高精准度[49]。然而到目前为止,以CDs为探针构建荧光增强型传感器检测Hg2+的报道较少。
Yuan等[37]构建了基于双(二硫代氨基甲酸)铜功能化碳点(CuDTC2-CDs)的荧光传感器,用于选择性测定Hg2+。其机理是CDs复合材料表面的CuDTC2通过电子转移和能量转移机制猝灭配合物中CDs的蓝色荧光。加入Hg2+后,Hg2+迅速取代Cu2+,从而阻碍Cu2+的能量传递途径,恢复CDs的荧光信号,该传感器对Hg2+分析的检测限可低至4 nmol/L。Han等[50]利用Ag+修饰的巯基功能化碳点(HS-CDs)构建Hg2+的超痕量荧光传感器,在HS-CDs体系中加入Ag+,导致生成棕色硫酸银团聚体,HS-CDs的荧光发生猝灭。加入Hg2+后,Hg2+迅速取代Ag+,由于HS-CDs表面氨基(-NH2)引起的能量陷阱,HS-CDs的荧光信号得以恢复,该传感器对实际水样的检测结果与ICP-AES检测结果相当,表明构建的传感器准确性良好。
另外一种信号增强型荧光传感器的构建是基于CDs的聚集诱导发光(Aggregation Induced Emission,AIE)特性。AIE是由唐本忠院士团队于2001年首次报道的[51]。传统有机发光材料只能在低浓度的溶液中才能发光,一旦溶液浓度提高时,分子聚集就会使得发光减弱甚至完全消失,这种现象被称为“聚集导致发光猝灭”。AIE材料恰好与之相反,当聚集发生时,探针会显示出强烈的荧光。目前为止,具有AIE性质的CDs的报道相对较少。其中,Xu等[38]以甘油为反应溶剂,胱氨酸为硫源,利用一锅微波辅助法制备了氮、硫共掺杂碳点(N,S-CDs)。该复合材料本身具有较弱的荧光信号,Hg2+存在时,由于形成S-Hg键相互作用形成配合物,引起聚集诱导发光。385 nm处的荧光强度在1~75mol/L Hg2+浓度范围内呈线性增长,实现了荧光增强型传感器对自来水和湖水中Hg2+的检测。
荧光猝灭型、荧光增强型传感器的信号输出模式为单信号,往往会受到激发光源波动、仪器灵敏度、探针周围微环境、荧光团光漂白、样品的光散射等因素的影响,可靠性降低。近些年,具有双信号输出模式的比率型荧光传感器得到快速发展和应用,其识别原理包括光诱导电子转移、分子内电荷转移、荧光共振能量转移、激发态分子内质子转移、激基缔合、聚集诱导发光、C=N异构化等[18]。这类传感器一方面可以通过建立内标,提高动态响应范围,削弱外界因素的干扰,增强探针的敏感性,分析结果更为可靠、准确;另一方面基于探针颜色随分析物浓度的增加而改变,易肉眼识别,可制作成试纸,从而实现灵敏可视化分析[18,52]。基于CDs的荧光探针一般由CDs和其他荧光分子的简单混合或共价键/非共价键连接而成,也可以由本身具有双发射功能的CDs构成。利用不同方法合成不同性质的CDs在比率荧光探针中可以作为参考信号、响应信号和双发射矩阵[23]。
2.2.1 CDs作为参考信号的比率荧光传感器
比率荧光传感器发射基团由2个独立的发射荧光团产生,这2个发射荧光团通过化学结合或物理杂化形成核心结构或多层结构,在相同的激发波长下,一个发射荧光团的信号依赖于分析物的浓度,另一个发射荧光团信号是惰性的,作为参考信号。如图3所示,根据信号变化情况,比率型荧光传感器可以分为2种类型[53]。一种是其中一个发射荧光团信号不变,作为参考信号,另一个荧光信号随目标物的加入,强度增强或减弱。另一种是随着检测目标物的加入,2个发射荧光团的信号发生相反的变化。用于检测Hg2+的CDs荧光传感器研究大多数集中在第一种类型,后者尚未见报道。
图4 基于金钠米团簇CDs体系检测Hg2+的荧光传感器[39]
如图4所示,Yan等[39]报道了一种灵敏、选择性好的Hg2+比率荧光传感器。 CDs作为参考信号,金纳米团簇(Au-NCs)作为响应信号,基于Hg2+与Au NCs之间的高亲和力,Au NCs的红色荧光随着Hg2+的加入发生明显猝灭,而CDs的蓝色荧光是稳定的,信号不发生改变。随着Hg2+的加入,体系荧光由粉红色变为蓝色。基于此机理,成功应用于自来水、湖水、矿泉水等实际水样中Hg2+的检测,Hg2+的检出限为28 nmol/L,进一步将该类比率荧光探针固定在醋酸纤维素圆形滤纸上,制备了可视化的纸基化学传感器,如图5所示。Liu等[17]利用便宜的天然生物质赖氨酸合成CDs,与生物质蛋清参与合成的Au NCs构建了类似的比率传感器,实现了实际水样中Hg2+的肉眼观察和检测,检测限为63 nmol/L。
图5 纸质传感器滴加不同浓度Hg2+溶液后的图像[39]
2.2.2 CDs作为响应信号的比率荧光传感器
CDs还可作为响应探针,与参考探针/基团通过共价键、简单混合等方式结合,形成比率荧光探针构建比率荧光传感器检测Hg2+。如图6所示,Xu等[40]利用共价键将发射蓝色荧光的CDs与发射红色荧光的二氧化硅包裹的碲化镉量子点(CdTe@SiO2)复合得到比率探针,用于Hg2+的现场可视化检测。其中,CdTe@SiO2量子点对Hg2+不敏感,作为可靠恒定的参考信号,而CDs对Hg2+非常敏感,随着Hg2+浓度的增加,其荧光信号显著降低,溶液由浅紫色变为红色,实现了Hg2+的可视化检测。
图6 基于比率传感器CDs 体系检测Hg2+的传感器[40]
Lu等[54]首次采用柠檬酸钠与组氨酸钠一锅热解法合成了功能化CDs。由于CDs与Hg2+之间的静电作用和金属配体配位作用,CDs的发射被Hg2+猝灭。加入GSH后,由于GSH与Hg2+之间有更强的亲和力,CDs的发射逐渐恢复。基于此,研究者将该CDs与对Hg2+和GSH不敏感的罗丹明(Rhodamine,RhB)简单混合,构建了可同时检测Hg2+和GSH的比率荧光传感器,该传感器对Hg2+和GSH的检出限分别为25和20 nmol/L。Fu等[55]也开发类似的传感器(图7),实现了河水样品中Hg2+的检测,该传感体系可用于环境重金属离子分析、食品质量检测和小鼠氧化应激研究。
CDs作为能量供体,与作为能量受体的荧光团通过能量传递耦合在一起组成比率荧光探针,利用分析物的扰动往往导致2个波长的发射在相反方向同时发生变化的原理也可以构建比率荧光传感器[56]。Hamd-Ghadareh等[41]将富含T碱基的单链DNA(ssDNA)和作为内参的罗丹明(Rb)修饰到CDs上形成双发射的Rb-CDs-ssDNA(S1),与AuNPs-cDNA(S2)杂化形成荧光探针。Hg2+存在时,基于T-Hg2+-T发生荧光共振能量转移,CDs在668 nm处荧光强度降低,Rb在580 nm处荧光恢复,580 nm与666 nm处荧光强度比值与Hg2+浓度在1.0×10−9~1.0 nmol/L、0.01~500mol/L范围内呈线性关系,检出限为5.0×10−19mol/L。
图7 基于CDs和罗丹明检测Hg2+和谷胱甘肽的比率传感器[55]
2.2.3 双发射波长CDs构建的比率荧光传感器
传统的单发射CDs对生物组织有一定的光损伤,易受到环境、相似组份和传感器浓度等因素的影响[57],而传统的双发射比率荧光探针也存在嵌入染料浸出、制备复杂、改性或共轭要求、分离纯化和光稳定性不均匀等不足。因此,开发无标记、本征双发射的CDs探针具有十分重要的意义[58-59]。
双发射CDs单独应用于比率型荧光纳米传感器,在2013年首次被报道[60]。当CDs具有双发射波长时,一个发射峰是响应信号,另一个发射峰是参考信号,该探针可用于pH、温度、阴阳离子等的检测。合成的CDs在380 nm激发下,在455和520 nm处出现了基于蓝色和绿色2个分辨良好的荧光带,pH、温度和金属离子对CDs的2种荧光带影响有很大差异。如图8所示,Zhao等[42]基于溶剂热处理玉米苞片的方法制备了一种CDs复合材料,该CDs在470和678 nm处各有一个发射带。当Hg2+存在时,678 nm处的荧光被明显猝灭,而470 nm处的荧光强度变化不大。基于此机理构建了一种比率荧光传感器,荧光强度比值与Hg2+浓度呈良好的线性关系,线性范围0~40mol/L,检出限约为9.0 nmol/L,对河水样品有较好的检测效果。
Li等[43]在pH值为7.0左右的乙醇水溶液中利用溶剂热处理法合成的CDs,显示蓝色(410 nm)和黄色(565 nm)2个发射峰。CDs在410 nm与565 nm 处的荧光强度比值在4.5~6.5和10.0~13.0的2个pH范围内表现出良好的线性关系。利用“开-关-开”模式检测Hg2+,100mol/L Hg2+溶液通过电子转移过程使蓝色荧光猝灭率达91%,加入0.5 mmol/L的氯化物使蓝色荧光得到97%的恢复。相反,黄色荧光几乎不受影响。在Hg2+浓度30~60mol/L范围内,在410和565 nm处荧光强度比值下降,两者显示较好的线型相关性,该传感体系可用于Hg2+的检测分析。
图8 用于检测Hg2+的CDs比率传感器的构建示意[42]
农作物赖以生存的环境包括土壤、水源等已受到了严重的重金属污染,因此对包括Hg2+在内的重金属离子进行灵敏、选择性检测越来越得到重视。CDs的生物质合成来源丰富、成本低、制备过程简单、绿色环保,所制备的CDs具有良好的光学性能,基于CDs构建的荧光传感器在农药残留、农业生产环境中重金属离子和阴离子、农产品功能成分与违禁添加剂检测等方面表现出巨大的应用潜力。
本文概述了合成CDs的生物质来源及基于CDs构建的荧光传感器在农业传感领域的应用研究,着重从荧光猝灭型单信号分析模式、荧光增强型单信号分析模式和比率型双信号分析模式等分析策略角度介绍了基于CDs构建的荧光传感器在Hg2+含量检测分析方面的应用及取得的相应进展。以农作物、农产品及其废弃物作为CDs的合成前体,来源丰富、成本较低、制备过程简单,且绿色环保、无二次污染。而基于CDs构建的荧光传感器用于Hg2+检测的多种模式,为农业传感领域中其他目标物的检测或监测提供了良好的参考依据。尽管如此,作者认为还存在以下问题值得探讨。
1)在以农作物、农产品等为原料制备CDs方面,虽然合成方法成本低、来源广、绿色环保,但不同天然物质的复杂成分导致合成CDs的荧光集中在短波长区域,颜色呈现多样性,且发光机理尚不清晰。另外,由于合成过程中难以对化学结构进行精确地调控,因此,合成的CDs荧光量子产率高低不均衡。基于此,在对CDs进行针对性的分离和纯化、掺杂或修饰等功能化设计,从而提高CDs的性能方面仍有待进一步深入研究。
2)基于CDs构建的荧光传感器在农药残留、重金属离子的检测方面表现出优异的灵敏度和较好的选择性,但目前大多传感体系仍处于实验室阶段。尽管比率荧光策略在一定程度上消除了样品对检测结果准确性的影响,但由于农业生产环境的复杂性和农产品组成成分的多样性,对检测样品进行恰当的前处理,仍然是提高基于CDs构建荧光传感器的稳定性和选择性、实现实际样品中待测组分定量检测和定性分析的另一挑战。
3)基于CDs构建的荧光传感器检测的大多是单一目标物,对于能同时检测多个目标物CDs荧光传感器的报道比较少。基于不同CDs优异的荧光性质及其在不同比率传感体系中的作用,结合检测体系的可视化设计、传感阵列技术的运用以及便携终端的开发,研制小型便携式设备并应用于农业生产环境、农产品或农作物中Hg2+及更多组分的快速、现场检测,为食品质量安全提供技术支持,是CDs荧光传感器在农业传感领域另一重要的发展趋势。
[1] Chowdhury S, Mazumder M A J, Al-Attas O, et al. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries[J]. Science of the Total Environment, 2016, 569: 476-488.
[2] 敖明,柴冠群,范成五,等. 稻田土壤和稻米中重金属潜在污染风险评估与来源解析[J]. 农业工程学报,2019,35(6):198-205. Ao Ming, Chai Guanqun, Fan Chengwu, et al. Evaluation of potential pollution risk and source analysis of heavy metals in paddy soil and rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactionsof the CSAE), 2019, 35(6): 198-205. (in Chinese with English abstract)
[3] 王卫华,雷龙海. 毛坪铅锌矿区农耕地土壤重金属空间分布、污染与生态评估[J]. 排灌机械工程学报,2016,34(11):979-989. Wang Weihua, Lei Longhai. Spatial distribution, contamination and potential ecological risk evaluation of heavy metals in farmlands around Maoping lead zinc mining area[J]. Journal of Drainage and Irrigation Machinery Engineering, 2016, 34(11): 979-989. (in Chinese with English abstract)
[4] Sun Yaping, Zhou Bing, Lin Yi, et al. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. Journal of the American Chemical Society, 2006, 128(24): 7756-7757.
[5] Baker Sheila N, Baker Gary A. Luminescent carbon nanodots: Emergent nanolights[J]. Angewandte Chemie-International Edition, 2010, 49(38): 6726-6744.
[6] Qian Zhaosheng, Ma Juanjuan, Shan Xiaoyue, et al. Highly luminescent N-doped carbon quantum dots as an effective multifunctional fluorescence sensing platform[J]. Chemistry, 2014, 20(8): 2254-2263.
[7] Liu Haochi, Ding Jie, Zhang Kun, et al. Construction of biomass carbon dots based fluorescence sensors and their applications in chemical and biological analysis[J]. Trac-Trends in Analytical Chemistry, 2019, 118: 315-337.
[8] 叶松龄,黄佳佳,罗林,等. 碳点荧光探针的制备及其在食品分析中的应用[J]. 分析化学,2017,45(10):1571-1581. Ye Songling, Huang Jiajia, Luo Lin. Preparation of carbon dots and their application in food analysis as signal probe[J]. Chinese Journal of Analytical Chemistry, 2017, 45(10): 1571-1581. (in Chinese with English abstract)
[9] 车望远,刘长军,杨焜,等. 荧光碳点的制备和性质及其应用研究进展[J]. 复合材料学报,2016,33(3):431-450. Che Wangyuan, Liu Changjun,Yang Kun, et al. Research progress in preparation,property and applications of fluorescent carbon dots[J]. Acta Materiae Compositae Sinica, 2016, 33(3): 431-450. (in Chinese with English abstract)
[10] 李延琪,王昱,冯亮. 碳点的功能化及其在食品安全领域的应用[J]. 色谱,2020,38(7):732-740. Li Yanqi, Wang Yu, Feng Liang. Functionalization of carbon dots and their applications in food safety[J]. Chinese Journal of Chromatography, 2020, 38(7): 732-740. (in Chinese with English abstract)
[11] Zhan Lai, Guo Xinyuan, Cheng Zhenfang, et al. Green synthesis of fluorescent carbon dots from cherry tomatoes for highly effective detection of trifluralin herbicide in soil samples[J]. Chemistryselect, 2020, 5(6): 1956-1960.
[12] 陆婷婷,王金龙,詹相强,等. 基于碳点的适配体荧光传感器检测农药乐果[J]. 分析化学,2020,48(1):74-82. Lu Tingting, Wang Jinlong, Zhan Xiangqiang, et al. Carbon dots-based fluorescent aptasensor for detection of dimethoate pesticide[J]. Chinese Journal of Analytical Chemistry, 2020, 48(1): 74-82. (in Chinese with English abstract)
[13] 刘鼎. 碳点与分子印迹技术在农药检测中的应用[D].武汉:华中农业大学,2015. Liu Ding. The Detection of Pesticide Based on Carbon Dots and Molecular Imprinting Technology[D]. Wuhan: Huazhong Agricultural University, 2015. (in Chinese with English abstract)
[14] Sun Yuan, Wei Min, Liu Rui, et al. A smartphone-based ratiometric fluorescent device for field analysis of soluble copper in river water using carbon quantum dots as luminophore[J]. Talanta, 2019, 194: 452-460.
[15] Vallejos S, Antonio R J, Clemente G F, et al. Direct visual detection and quantification of mercury in fresh fish meat using facilely prepared polymeric sensory labels[J]. Journal of Materials Chemistry, 2017, 5(26): 13710-13716.
[16] Xu Yali, Niu Xiaoying, Zhang Haijuan, et al. Switch-on fluorescence sensing of glutathione in food samples based on a graphitic carbon nitride quantum dot (g-CNQD)-Hg2+chemosensor[J]. Journal of Agricultural and Food Chemistry, 2015, 63(6): 1747-1755.
[17] Liu Jinghan, Xue Hanyue, Liu Yingnan, et al. Visual and fluorescent detection of mercury ions using a dual-emission ratiometric fluorescence nanomixture of carbon dots cooperating with gold nanoclusters[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 223: 117364-117370.
[18] Bigdeli A, Ghasemi F, Abbasi-Moayed S, et al. Ratiometric fluorescent nanoprobes for visual detection: Design principles and recent advances: A review[J]. Anal Chim Acta, 2019, 1079: 30-58.
[19] Xu Ying, Fan Yao, Zhang Lei, et al. A novel enhanced fluorescence method based on multifunctional carbon dots for specific detection of Hg2+in complex samples[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 220: 117109-117122.
[20] Zu Fanlin, Yan Fanyong, Bai Zhangjun, et al. The quenching of the fluorescence of carbon dots: A review on mechanisms and applications[J]. Microchimica Acta, 2017, 184(7): 1899-1914.
[21] Qu Jiahuan, Wei Qingyi, Sun Dawen. Carbon dots: Principles and their applications in food quality and safety detection[J]. Critical Reviews in Food Science and Nutrition, 2018, 58(14): 2466-2475.
[22] Devi P, Rajput P, Thakur A, et al. Recent advances in carbon quantum dot-based sensing of heavy metals in water[J]. TrAC Trends in Analytical Chemistry, 2019, 114: 171-195.
[23] Yan Fanyong, Bai Zhangjun, Liu Fan, et al. Ratiometric fluorescence probes based on carbon dots[J]. Curr Org Chem, 2018, 22(1): 57-66.
[24] 陈志燕,孟冬玲,华建豪,等. 氮掺杂碳量子点荧光猝灭法检测水中Hg2+[J]. 分析科学学报,2018,38(7):214-218. Chen Zhiyan, Meng Dongling, Hua Jianhao, et al. Fluorescence quenching of nitrogen doped carbon quantum dots for determination of Hg2+in water[J]. Journal of Analytical Science, 2018, 38(7): 214-218. (in Chinese with English abstract)
[25] 闫叶寒. 比率荧光传感器的设计及其对环境污染物小分子的可视化检测[D].合肥:中国科学技术大学,2017. Yan Yehan. Design of Radiometric Sensor and Its Visualization of Small Molecules for Environmental Pollutants[D]. Hefei: University of Science and Technology of China, 2017. (in Chinese with English abstract)
[26] 白艳华. 荧光贵金属纳米簇的合成及对金属离子的分析应用[D].湘潭:湘潭大学,2016. Bai Yanhua. Synthesis of Fluorescent Noble Metal Nanoclusters and Their Application in the Analysis of Metal Ions[D]. Xiangtan: Xiangtan University, 2016. (in Chinese with English abstract)
[27] 侯菊英. 基于碳量子点荧光技术快速测定果汁中的汞离子和有机磷农药残留[D].泰安:山东农业大学,2015. Hou Juying. Rapid Detection of Hg2+and Organophosphorus Pesticides in Fruit Juices Based on Carbon Dots and Fluorescent Technique[D]. Taian: Shandong Agricultural University, 2015. (in Chinese with English abstract)
[28] 刘晨光,王久军,张兴平,等. 基于寡核苷酸链的汞离子荧光生物传感器[J]. 分析化学,2017,45(2):163-168. Liu Chenguang, Wang Jiujun, Zhang Xingping, et al. A fluorescence biosensor for detection of mercury ion based on oligonucleotide[J]. Chinese Journal of Analytical Chemistry, 2017, 45(2): 163-168. (in Chinese with English abstract)
[29] 郑爱华,王佳慧,吉邢虎,等. 基于水溶性硅量子点的汞离子荧光传感器[J]. 分析科学学报,2018,34(1):43-46. Zheng Aihua, Wang Jiahui, Ji Xinghu, et al. A novel fluorescence sensor for mercury ions based on water-soluble silicon quantum dots[J]. Journal of Analitical Science, 2018, 34(1): 43-46. (in Chinese with English abstract)
[30] 林奇,陈佩,刘娟,等. 汞离子荧光、比色传感器[J]. 化学进展,2013,25(7):1177-1186. Lin Qi, Chen Pei, Liu Juan, et al. Colorimetric and fluorescent chemo sensors for Hg2+ions[J]. Progress in Chemistry, 2013, 25(7): 1177-1186. (in Chinese with English abstract)
[31] 田春霞.用于检测汞离子的纳米光学传感器的研究进展[J]. 理化检验:化学分册,2017,53(10):1234-1240. Tian Chunxia. Recent progress of nano-optical sensors for inspection of mercury ion[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2017, 53(10): 1234-1240. (in Chinese with English abstract)
[32] 刘文,李婷婷,张冰,等. 基于绿色天然物质合成荧光碳点及其性质和应用综述[J]. 材料导报,2019,33(2):402-409. Liu Wen, Li Tingting, Zhang Bing, et al. Properties and applications of fluorescent carbon dots prepared by green natural substances: A review[J]. Materials Reports, 2019, 33(2): 402-409. (in Chinese with English abstract)
[33] 宋项宁. 环境中小分子物质的分析新方法及应用[D].合肥:中国科学技术大学,2015. Song Xiangning. New Analytical Methods for Small Molecules in the Environment and Their Applications[D]. Hefei: University of Science and Technology of China, 2015. (in Chinese with English abstract)
[34] 孙英祥,孙相宝,何志伟,等. 桃花水热法一步合成水溶性荧光碳点[J]. 材料科学与工程学报,2014,32(3):393-397. Sun Yingxiang, Sun Xiangbao, He Zhiwei, et al. Synthesis of water-soluble fluorescent carbon dots from peach blossom by one-step hydrothermal method[J]. Journal of Materials Science and Engineering, 2014, 32(3): 393-397. (in Chinese with English abstract)
[35] Guo Yongming, Zhang Lianfeng, Zhang Shushen, et al. Fluorescent carbon nanoparticles for the fluorescent detection of metal ions[J]. Biosensors & Bioelectronics, 2015, 63: 61-71.
[36] Li Libo, Yu Bin, You Tianyan. Nitrogen and sulfur co-doped carbon dots for highly selective and sensitive detection of Hg (II) ions[J]. Biosens Bioelectron, 2015, 74: 263-269.
[37] Yuan Chao, Liu Bianhua, Liu Fei, et al. Fluorescence “turn on” detection of mercuric ion based on bis (dithiocarbamato) copper(II) complex functionalized carbon nanodots[J]. Analytical Chemistry, 2014, 86(2): 1123-1130.
[38] Xu Yuan, Li Huiyu, Wang Bo, et al. Microwave-assisted synthesis of carbon dots for “turn-on” fluorometric determination of Hg(II) via aggregation-induced emission[J]. Microchimica Acta, 2018, 185: 252.
[39] Yan Yehan, Yu Huan, Zhang Kui, et al. Dual-emissive nanohybrid of carbon dots and gold nanoclusters for sensitive determination of mercuric ions[J]. Nano Research, 2016, 9(7): 2088-2096.
[40] Xu Haiyan, Zhang Kaina, Liu Qisi, et al. Visual and fluorescent detection of mercury ions by using a dually emissive ratiometric nanohybrid containing carbon dots and CdTe quantum dots[J]. Microchimica Acta, 2017, 184(4): 1199-1206.
[41] Hamd-Ghadareh S, Salimi A. DNA-functionalized dye-loaded carbon dots: Ultrabright FRET platform for ratiometric detection of Hg (II) in serum samples and cell microenvironment[J]. Ionics, 2019, 25(9): 4469-4479.
[42] Zhao Jingjin, Huang Mengjiao, Zhang Liangliang, et al. Unique approach to develop carbon dot-based nanohybrid near-infrared ratiometric fluorescent sensor for the detection of mercury ions[J]. Analytical Chemistry, 2017, 89(15): 8044-8049.
[43] Li Bo, Ma Hong, Zhang Bo, et al. Dually emitting carbon dots as fluorescent probes for ratiometric fluorescent sensing of pH values, mercury(II), chloride and Cr(VI) via different mechanisms[J]. Microchimica Acta, 2019, 186(6): 341-350.
[44] Wei Jumeng, Liu Bitao, Zhang Xin, et al. One-pot synthesis of N, S co-doped photoluminescent carbon quantum dots for Hg2+ion detection[J]. New Carbon Materials, 2018, 33(4): 333-340.
[45] Omer Khalid M, Aziz Kosar H. Hama, Mohammed Sewara J. Improvement of selectivity via the surface modification of carbon nanodots towards the quantitative detection of mercury ions[J]. New Journal of Chemistry, 2019, 43(33): 12979-12986.
[46] Lqbal A, Lqbal K, Xu Lige, et al. Heterogeneous synthesis of nitrogen-doped carbon dots prepared via anhydrous citric acid and melamine for selective and sensitive turn on-off-on detection of Hg (II), glutathione and its cellular imaging[J]. Sensors and Actuators B-Chemical, 2018, 255: 1130-1138.
[47] Yan Fanyong, Shi Dechao, Zheng Tancheng, et al. Carbon dots as nanosensor for sensitive and selective detection of Hg2+and L-cysteine by means of fluorescence “Off-On” switching[J]. Sensors and Actuators B-Chemical, 2016, 224: 926-935.
[48] Pourreza N, Ghomi M. Green synthesized carbon quantum dots from Prosopis juliflora leaves as a dual off-on fluorescence probe for sensing mercury (II) and chemet drug[J]. Materials Science & Engineering C-Materials for Biological Applications, 2019, 98: 887-896.
[49] Meng Qingnan, Zhang Feifei, Wang Limin, et al. Facile fabrication of mesoporous N-doped Fe3O4@C nanospheres as superior anodes for Li-ion batteries[J]. Rsc Advances, 2014, 4(2): 713-716.
[50] Han Yong, Shi Limei, Luo Xueli, et al. A signal-on fluorescent sensor for ultra-trace detection of Hg2+via Ag+ mediated sulfhydryl functionalized carbon dots[J]. Carbon, 2019, 149: 355-363.
[51] Luo Jingdong, Xie Zhiliang, Lam Jacky W Y, et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5- pentaphenylsilole[J]. Chemical Communications, 2001, 18: 1740-1741.
[52] Huang Xiaolin, Song Jibin, Yung B C, et al. Ratiometric optical nanoprobes enable accurate molecular detection and imaging[J]. Chemical Society Reviews, 2018, 47(8): 2873-2920.
[53] Gui Rijun, Jin Hui, Bu Xiangning, et al. Recent advances in dual-emission ratiometric fluorescence probes for chemo/biosensing and bioimaging of biomarkers[J]. Coordination Chemistry Reviews, 2019, 383: 82-103.
[54] Lu Shuaimin, Wu Di, Li Guoliang, et al. Carbon dots-based ratiometric nanosensor for highly sensitive and selective detection of mercury(II) ions and glutathione[J]. Rsc Advances, 2016, 6(105): 103169-103177.
[55] Fu Huili, Ji Zhongyin, Chen Xuejie, et al. A versatile ratiometric nanosensing approach for sensitive and accurate detection of Hg2+and biological thiols based on new fluorescent carbon quantum dots[J]. Anal Bioanal Chem, 2017, 409(9): 2373-2382.
[56] Wu Liang, Guo Qingsheng, Liu Yuqian, et al. Fluorescence resonance energy transfer-based ratiometric fluorescent probe for detection of Zn2+using a dual-emission silica-coated quantum dots mixture[J]. Anal Chem, 2015, 87(10): 5318-5323.
[57] He Jiangling, He Youling, Chen Yonghao, et al. Solid-state carbon dots with red fluorescence and efficient construction of dual-fluorescence morphologies[J]. Small, 2017, 13(26): 1700075-1700084.
[58] 上官璟芳. 新型荧光碳量子点纳米探针的制备及其生化分析应用研究[D].长沙:湖南大学,2017. Shang Guan Jingfang. Preparation of Novel Fluorescent Carbon-dots-based Nanoprobe and its Application in Biochemical Analysis[D]. Changsha: Hunan University, 2017. (in Chinese with English abstract)
[59] Zhu Panpan, Cheng Zhen, Du Lingling, et al. Synthesis of the cu-doped dual-emission fluorescent carbon dots and its analytical application[J]. Langmuir, 2018, 34(34): 9982-9989.
[60] Qu Songnan, Chen Hong, Zheng Xuanming, et al. Ratiometric fluorescent nanosensor based on water soluble carbon nanodots with multiple sensing capacities[J]. Nanoscale, 2013, 5(12): 5514-5518.
Research progress of synthesis of carbon dots and fluorescent sensor based on carbon dots for mercury detection
Zhou Jun, Bi Xiaoya, Li Libo, You Tianyan※
(1.,,,212013,; 2.,,212013,)
Mercury ion (Hg2+) is one of the most frequently occurring and most toxic heavy metal pollutants, which may seriously damage the growth environment of crops and further threaten the quality and safety of agricultural products and human health. Fluorescence analysis is a simple method of Hg2+detection with high sensitivity. The analysis performance of fluorescence sensor may be seriously affected by fluorescence probes. Carbon dots (CDs) have the advantages of simple preparation, high fluorescence efficiency, and good biocompatibility. Therefore, fluorescence sensors based on CDs have attracted wide attention. This study introduced the synthesis status of CDs prepared from biomasses such as crops, agricultural products and their wastes, and pointed out that the synthesis of CDs was rich in natural biomass materials, and CDs synthesized by ultrasonic, microwave, and hydrothermal methods have the advantages of low cost, simple preparation process, and environmental protection. In addition, the application research of fluorescence sensor based on CDs for the detection of antibiotics, pesticides, and food additives in the field of agricultural sensing was briefly introduced. Furthermore, the research progress of fluorescence sensor based on CDs in Hg2+detection was systematically introduced from the perspectives of fluorescence quenching single-signal analysis mode, fluorescence-enhanced single-signal analysis mode and ratio-based signal analysis mode. The fluorescent materials, analytical performance and advantages and disadvantages of each method used in different sensing modes were summarized and compared. Among the single-signal sensors, fluorescence quenching sensors could optimize the detection performance of CDs by doping, surface modification, or "on-off-on" strategies; the fluorescence intensity of fluorescence-enhanced sensors ranged from weak to strong, and fluorescence colors were created from scratch, which could reduce the occurrence of false positive signals, but few fluorescence-enhanced sensors constructed by CDs as probes may occur, which needs to be further developed; The CDs with different properties could be used as reference signals , response signals as well as dual emission matrix in ratio fluorescence sensors. Besides, ratio fluorescence sensor could establish an internal standard to weaken the interference of external factors, the analysis result was more reliable and accurate, and it was easier to realize sensitive visual analysis. Different models of fluorescence sensors were all widely used in the detection of Hg2+in lake water, soil, and agricultural products. The bottleneck and development trend of the fluorescence sensor based on CDs using biomass as the synthesis source in the field of agricultural sensing were analyzed: 1) the luminescence mechanism of CDs remained unclear due to the complex composition of precursors in the preparation of CDs from crops and agricultural products. Moreover, the fluorescence quantum yield of synthesized CDs was uneven, and it needs to be separated, purified, doped or modified in a targeted manner; 2) most of the CDs based fluorescent sensors could detect only one single target, while the CDs based fluorescent sensors detecting multiple targets at the same time were little reported, and most of the sensing systems were still in the experimental stage, so it was difficult to perform the on-site detection of agricultural environmental quality and crop quality.
sensors; fluorescence; mercury; carbon dots; ratio fluorescence; agricultural environment
周军,毕晓雅,李丽波,等.碳点合成及用于检测汞离子的碳点荧光传感器研究进展[J]. 农业工程学报,2020,36(24):134-142.doi:10.11975/j.issn.1002-6819.2020.24.016 http://www.tcsae.org
Zhou Jun, Bi Xiaoya, Li Libo, et al. Research progress of synthesis of carbon dots and fluorescent sensor based on carbon dots for mercury detection[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(24): 134-142. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.24.016 http://www.tcsae.org
2020-02-29
2020-11-10
国家自然科学基金(22074055);江苏高校优势学科建设工程(三期)资助项目(PAPD-2018-87)
周军,博士生,主要从事农业生物环境检测分析研究。Email:1000003738@mail.ujs.edu.cn
由天艳,教授,博士生导师,主要从事农业信息化、农业先进传感研究。Email:youty@ujs.edu.cn
10.11975/j.issn.1002-6819.2020.24.016
TP212.9
A
1002-6819(2020)-24-0134-9