石丁夫 祖艳红 陈瑞瑞 杜李继 王凯 刘玉军 陈龙胜
摘要[目的]利用草甘膦易溶于水的特点,建立一种离子色谱法测定土壤样品中草甘膦残留量的方法。[方法]结合影响草甘膦检测精确度的单因素试验,确定测定土壤中草甘膦残留量的最佳离子色谱检测方法,并对该方法的准确性和精密度进行验证。[结果]测定的草甘膦浓度在0.10~2.00 mg/L线性关系良好,相关系数(r)为0.999 7;其定性检出限(LOD)和定量检出限(LOQ)分别为0.05 mg/L(S/N>3)、0.10 mg/L(S/N>10);通过连续进样测得其保留时间、峰面积和峰高的相对标准偏差(RSD)分别为0.09%、0.84%和0.50%;在 0.50~2.00 mg/L加标范围内,土壤中草甘膦的平均回收率为106%~113%。[结论]相对于常用的液相色谱检测法,此法无需柱前或柱后衍生、萃取、浓缩等繁琐步骤,前处理方法简单高效。该方法的回收率和精密度较好,受其他离子干扰小,且简单、快速,可满足对土壤草甘膦残留检测的要求。
关键词土壤;草甘膦;离子色谱法;检测
中图分类号O 65文献标识码A
文章编号0517-6611(2019)18-0209-02
doi:10.3969/j.issn.0517-6611.2019.18.058
开放科学(资源服务)标识码(OSID):
Detection of Glyphosate in Soil by Ion Chromatography
SHI Ding-fu,ZU Yan-hong,CHEN Rui-rui et al(Anhui Engineering Technology Research Center for Extraction and Isolation of Active Components, Anhui Academy of Science and Technology,Hefei,Anhui 230000)
Abstract[Objective]Taking the advantage of the characteristics of glyphosate,which was soluble in water,a method for determining the residual amount of glyphosate in soil samples by ion chromatography is established.[Method]Combining the experiments of single factor impacting the accuracy of detecting glyphosate,weve confirmed the best determination of testing glyphosate residues in soil sample,and verified the accuracy and precision of this method.[Result]The experiment got a good linear relationship and a well correlation coefficient (r =0.999 7) in the concentration range of 0.10-2.00 mg/L; the limits of detection (LOD) and limits of quantification (LOQ) were 0.05 mg/L (S/N>3) and 0.10 mg/L (S/N>10),respectively; the relative standard deviation (RSD%) of retention time,peak area and peak height measured by continuous sampling was 0.09%,0.84% and 0.50%,respectively; in the concentration range of 0.50-2.00 mg/L,the average recovery rate of glyphosate in soil sample between 106% to 113%.[Conclusion]Compared with the commonly used liquid chromatography method,this method does not require complicated steps such as pre-column or post-column derivatization,extraction,concentration,etc.,and the pretreatment method is simple and efficient.The method has a well recovery yield and good precision,and was hardly influenced by other anions,would satisfy the requirement for glyphosate residue detection in soil sample.
Key wordsSoil; Glyphosate; Ion chromatography method; Detection
草甘膦(Glyphosate,N-(phosphonomethyl)glycine)是目前應用最广泛的一种广谱性有机膦除草剂,能有效抑制一年或多年生杂草[1],但由于其对人体和环境的危害性[2-3],其残留量的检测近年来一直是农残检测的热点。
由于草甘膦沸点较高且难溶于常用有机试剂,直接使用气相色谱法或气相色谱质谱法对草甘膦成分检测报道较少,往往都是对其酯化或酰基化以使其沸点降低后再进样分析[4-5]。目前草甘膦的仪器分析方法主要是液相色谱法,该法虽然检测灵敏[6-8],但由于化合物结构中无特征的紫外吸收峰[9],其经典方法需要使用氯甲酸(9-芴甲基)酯(FMOC-Cl)对其进行柱前[10-13]衍生化后再进行测试;其他定性定量分析方法有红外光谱法[14]、吸光光度法[15]和化学发光法[16]等光谱法,该类方法虽然简便,但应用范围较窄,易受其他离子干扰。笔者将土壤样品溶于去离子水中,使用离子色谱来检测草甘膦含量,以达到简化样品提取流程、提高方法检测灵敏度的目的。
1材料与方法
1.1试验材料和试剂GB/T 6682规定的一级水。KOH高纯度淋洗液,浓度为30 mmol/L。 草甘膦标准物质(Glyphosate,CAS号:1071-83-6),纯度不低于98.0%。草甘膦标准储备溶液(ρ=10.00 mg/L):准确称取10.0 mg草甘膦标准物质,溶于适量水中,移入1 000 mL容量瓶中,加水稀释至刻度,混匀。
草甘膦标准工作溶液(ρ=1.00 mg/L):准确吸取10 mL草甘膦标准储备溶液于100 mL容量瓶中,加水稀释至刻度,混匀。水相滤膜0.22 μm。
1.2离子色谱测试条件
ICS-1100离子色谱仪(Thermofisher公司), 配EGC II KOH免试剂淋洗液发生灌;保护柱:Dionex IonPac AG19,4 mm×50 mm;
分析柱:Dionex IonPac AS19(C 18柱),4 mm×250 mm; 抑制器:Dionex AERS 500 (4 mm),自循环抑制模式,电流设定值为50 mA;检测器:电导检测器。
1.3KOH流动相洗脱程序0~20 min,30 mmol/L,等梯度淋洗。流速1 mL/min;柱温30 ℃;进样量25 μL。
1.4样品前处理方法将土壤样品风干,過0.25 mm(60目)筛,称取试样5.00 g(精确到0.01 g),加20.00 mL水于50 mL离心管中,摇匀,超声提取30 min,再在4 000 r/min转速下离心10 min,取上层清液,过0.22 μm水相滤膜,按“1.3”KOH流动相洗脱程序进行测定。
2结果与分析
2.1阴离子干扰测试按“1.3” KOH流动相洗脱条件,同时对1.00 mg/L草甘膦和Cl-、NO2-、NO3-、SO42-、PO43-几种土壤中常见阴离子组分进行分离。在30 mmol/L KOH等度淋洗条件下未见干扰,如图1所示,草甘膦在保留时间约 15 min处出峰,峰形分辨率较好,呈正态分布,无明显拖尾,且与其他阴离子保留时间间隔较远,不受干扰,具有良好的选 择性。
2.2重现性
同时对2.00 mg/L草甘膦与Cl-、NO2-、NO3-、SO42-、PO43-等常见阴离子混合标准溶液连续7次进样测定,考察重复性,结果显示,草甘膦的保留时间的相对标准偏差(RSD)为0.09%,峰面积的RSD为0.84%,峰高的RSD为 0.50%,通过对样品连续进样表明在该方法下对样品中草甘膦含量测定的保留时间、峰面积以及峰高均可保持较好的重复性。同条件下Cl-、NO2-、NO3-、SO42-、PO43-等阴离子保留时间的RSD分别为0.03%、0.02%、0.03%、0.02%、0.08%,峰面积的RSD分别为 0.59%、0.19%、1.04%、0.99%、0.55%,峰高的RSD分别为0.16%、0.13%、0.31%、0.35%、0.16%,均具有良好的重现性。
2.3线性关系与检测限
在“1.3”KOH流动相洗脱程序下,分别配制浓度为0.10、0.20、0.50、1.00、2.00 mg/L的标准溶液,并以标准溶液的质量浓度为横坐标、相应的峰面积为纵坐标绘制标准曲线,如图2所示,在该范围内,草甘膦的线性
关系良好,其线性方程为y=0.0593x-0.0017(r=0.9997)。
土壤试样中草甘膦含量测定的最低定性检测限为0.05 mg/L(S/N>3);其最低定量检测限为0.10 mg/L(S/N>10)。
2.4加标回收
在已知含量的土壤样品溶液中,分别加入 0.50、0.80、1.00、1.50、2.00 mg/L的标准溶液,按“1.3”KOH流动相洗脱程序进行了加标回收试验,其回收率计算结果如表1所示,草甘膦加标回收率为104.7%~112.5%。
3结论
土壤中残留的草甘膦用去离子水提取后,经0.22 μm水相滤膜过滤即可使用离子色谱进样检测,前处理简单高效。该方法使用AS19阴离子柱分析,使用KOH作为淋洗液等梯度淋洗,电导检测器检测,能够将草甘膦同土壤中多种常见无机阴离子有效区分开,不受干扰,且重现性和线性关系均良好,检出限和回收率较高,为简化土壤中草甘膦定性和定量检测方法提供参考。
参考文献
[1]GOLDSTEIN D A,ACQUAVELLA J F,MANNION R M,et al.An analysis of glyphosate data from the California Environmental Protection Agency Pesticide Illness Surveillance Program[J].J Toxicol Clin Toxicol,2002,40(7):885-892.
[2]MALLAT E,BARCEL D.Analysis and degradation study of glyphosate and of aminomethylphosphonic acid in natural waters by means of polymeric and ion-exchange solid-phase extraction columns followed by ion chromatography-post-column derivatization with fluorescence detection[J].J Chromatogr A,1998,823(1/2):129-136.
[3]NEISZ D.Guide to crop protection[M].Canada:Publications Saskatchewan,2019:235-241.
[4]HORI Y,FUJISAWA M,SHIMADA K,et al.Determination of the herbicide glyphosate and its metabolite in biological specimens by gas chromatography-mass spectrometry.A case of poisoning by roundup herbicide[J].J Anal Toxicol,2003,27(3):162-166.
[5]STALIKAS C D,KONIDARI C N.Analytical methods to determine phosphonic and amino acid group-containing pesticides[J].J Chromatogr A,2001,907(1/2):1-19.
[6]SI Y B,SANG Z Y,CHENG F X.Determination of glyphosate in soil by high performance liquid chromatography after derivatization with p-toluenesulphonyl chloride[J].Chin J Anhui Agric Univ,2009,36(1):136-139.
[7]FANG F,XU H,WEI R Q,et al.Determination of glyphosate by high performance liquid chromatography with onotrobenzenesulfonyl chlride as derivatization reagen[J].Chin J Instrum Anal,2011,30(6):683-686.
[8]FANG F,WEI R Q,LIU X N.Determination of glyphosate by HPLC with a novel pre-column derivatization reagent[J].Chin J Bioprocess Eng,2014,12(3):69-73.
[9]KHROLENKO M V,WIECZOREK P P.Determination of glyphosate and its metabolite aminomethylphosphonic acid in fruit juices using supported-liquid membrane preconcentration method with high-performance liquid chromatography and UV detection after derivatization with p-toluenesulphonyl chloride[J].J Chromatogr A,2005,1093(1/2):111-117.
[10]PAN X P,LOU J J.Research progress on the detection method of glyphosate residue[J].Chin J Hangzhou Univ,2011,10(6):506-509.
[11]LI J P,LIANG Z H.Determination of glyphosate in water by high performance liquid chromatography with pre-column derivatization[J].Chin J Environ Health,2012,29(1):73-74.
[12]KIM M,STRIPEIKIS J,I N~N F,et al.A simplified approach to the determination of N-nitroso glyphosate in technical glyphosate using HPLC with post-derivatization and colorimetric detection[J].Talanta,2007,72(3):1054-1058.
[13]QIAN K,TANG T,SHI T,et al.Residue determination of glyphosate in environmental water samples with high-performance liquid chromatography and UV detection after derivatization with 4-chloro-3,5-dinitrobenzotrifluoride[J].Anal Chim Acta,2009,635(2):222-236.
[14]UNDABEYTIA T,MORILLO E,MAQUEDA C.FTIR study of glyphosate-copper complexes[J].J Agric Food Chem,2002,50(7):1918-1921.
[15]SUN N,HU B X,MO W M.Single sweep oscillopolarographic technique for the determination of glyphosate after derivatization[J].Agrochemicals,2007,46(9):609-611.
[16]ADCOCK J L,BARNETT N W,GERARDI R D,et al.Determination of glyphosate mono-isopropylamine salt in process samples using flow injection analysis with tris(2,2'-bipyridyl)ruthenium(II) chemiluminescence detection[J].Talanta,2004,64(2):534-537.