HE Yu-ping, CHEN Xiang’en
(College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, P. R. China)
Abstract: Let G be a simple graph and f be a proper total coloring (or a total coloring in brief)of G. For any vertex u in G,Cf(u)denote the set of colors of vertex u and edges which incident with vertex u. Cf(u)is said to be the color set of vertex u under f. If Cf(u)Cf(v)for any two distinct vertices u and v of G,then f is called vertex-distinguishing total coloring of G (in brief VDTC), a vertex distinguishing total coloring using k colors is called k-vertexdistinguishing total coloring of G (in brief k-VDTC). The minimum number k for which there exists a k-vertex-distinguishing total coloring of G is called the vertex-distinguishing total chromatic number of G, denoted by χvt(G). By the method of prior distributing the color sets, we obtain vertex-distinguishing total chromatic number of mC9 in this paper.
Key words: the union of graphs; proper total coloring; vertex-distinguishing total coloring;vertex-distinguishing total chromatic number
With coloring problem of graphs is widely applied in reality, it has gradually become one of important fields which were studied by many scholars. The vertex-distinguishing proper edge coloring was discussed in [1-4].
Let G be a simple graph and let f be a proper total coloring of G. For any vertex u in G,Cf(u) denote the set of colors of vertex u and edges which incident with vertex u. Cf(u) is said to be the color set of vertex u under f. If Cf(u)Cf(v) for any two distinct vertices u and v of G, then f is called vertex-distinguishing total coloring of G (in brief VDTC), a vertex distinguishing total coloring using k colors is called k-vertex-distinguishing total coloring of G(in brief k-VDTC). The minimum number k for which there exists a k-vertex-distinguishing total coloring of G is called the vertex-distinguishing total chromatic number of G, denoted by χvt(G). That is, χvt(G)=min { k | G has a k-VDTC}.
For a graph G, let ni(G) denote the number of vertices of degree i. Set
Obviously, χvt(G)≥µ(G).
Vertex distinguishing (proper) total coloring of a graph is introduced by Zhang et al in[5]. The vertex distinguishing total chromatic numbers of complete graph, complete bipartite graph, wheel, fan, double star, cycle, path, Pn∨Pn, Pn∨Cn, Cn∨Cn, etc, are determined and the following conjecture were proposed in [5].
The vertex-distinguishing total chromatic numbers of 2Cn, mC3, mC4, mC5and mC7have been discussed in [6-10]. The vertex-distinguishing total chromatic number of the union mC9of m disjoint cycles of order 9 will be discussed and give the following Theorem 1. Its proof is obtained by the algorithm on the optimal vertex-distinguishing total coloring of mC9given in Section 4.
The vertex-distinguishing VE and IE-total colorings of graphs were discussed in [11, 12].
Firstly, for each n ≥3, we construct an (n −2)×(n −2) square matrix Anas follows.
The first row of Anis ( {n,1,2},{n,2,3},{n,3,4},··· ,{n,n −3,n −2},{n,n −2,n −1} );
The second row of Anis ( {n,1,3},{n,2,4},{n,3,5},··· ,{n,n −3,n −1},∅);
The third row of Anis ( {n,1,4},{n,2,5},{n,3,6},··· ,∅,∅);
······
The (n −3)-th row of Anis ( {n,1,n −2},{n,2,n −1},∅,··· ,∅,∅);
The (n −2)-th row of Anis ( {n,1,n −1},∅,∅,··· ,∅,∅).
Note that each element of Anis either an empty set or a 3-subset of {1,2,··· ,n}, which contains n.
Let 1 ≤i1 Submatrix An[i1,i2,··· ,ir|j1,j2,··· ,js] of Anis an r×s matrix which is comprised by all the elements of Anin i1-, i2-, ···, or ir-th rows and in j1-, j2-, ···, or js-th columns of An. If elements in a 9×2 submatrix B of Anare exactly the color sets of all vertices of 2C9under some its vertex-distinguishing proper total coloring, then a submatrix B is called good. If nine elements(not empty set)of Anare exactly the color sets of all vertices of one C9under some its vertex-distinguishing proper total coloring, then the group which consists of the nine elements is called good. Nnie elements in a good 9×2 submatrix of Anmay become a good group,but nine elements in a good group are not necessarily the elements of a good 9×2 submatrix of An. The total coloring of C9is shown in Fig. 1,we denote it by f(c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13,c14,c15,c16,c17,c18). Fig. 1: VDTC f(c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13,c14c15,c16,c17,c18) of C9 Lemma 1When i ≡1(mod 9),j ≡1(mod 2),if all elements in An[i,i+1,i+2,i+3,i+4,i+5,i+6,i+7,i+8|j,j+1]are not empty sets,then An[i,i+1,i+2,i+3,i+4,i+5,i+6,i+7,i+8|j,j+1] is a good 9×2 submatrix. ProofNote that Obviously,eighteen subsets in the first and second columns of An[i,i+1,i+2,i+3,i+4,i+5,i+6,i+7,i+8|j,j+1] are the color sets of all vertices of 2C9under vertex-distinguishing total coloring f(j,n,j+i,j+i+1,n,j+i+2,j+1,j+i+3,n,j+i+4,j+1,j+i+5,n,j+i+6,j+1,j+i+7,n,j+i+1) and f(j,j+i+2,n,j+i+3,j,j+i+4,n,j+i+5,j,j+i+6,n,j+i+9,j+1,n,j+i+8,j,n,j+i+7). The proof is completed. If an element of Anis neither element of any good 9×2 submatrix appeared in Lemma 1 nor an empty set, then the element of Anis called the element left of An. Lemma 2If n ≡0,3,6(mod 9),n ≥3, then all nonempty elements of Anexcept for{n,1,n −1} can be partitioned intogroups, such that each group has nine subsets and is good. ProofBy Lemma 1, we only consider the elements left of An. Case 1n ≡3(mod 9). Let n ≥3,i ≡1(mod 9), 1 ≤i ≤n −2. The only element of Anis just the element left of Suppose n ≥12, the elements left in the 3, 4, 5, 6, 7, 8, 9 and 10 -th columns of Ancan be partitioned into four good groups, then corresponding VDTC of C9is f(n,n−8,3,n−7,n,n−6,3,n−5,n,n−4,3,n−3,n,n−2,3,n,n−1,10),f(n,n−7,4,n−6,n,n−5,4,n−4,n,n−3,4,n−2,n,4,n−1,n,9,n−2),f(n,n−6,5,n−5,n,n−4,5,n−3,n,n−2,5,n,n−1,8,n,n−2,8,n−3)and f(n,n −5,6,n −4,n,n −3,6,n −2,n,6,n −1,n,7,n −2,n,n −3,7,n −4), respectively.when n=2, the conclusion is obtained. Suppose n ≥21 as follows. Let n ≥21,i ≡2(mod 9),11 ≤i ≤n−2. The elements left in the i,i+1,i+2,i+3,i+4,i+5,i+6,i+7 and i+8-th columns of Ancan be partitioned into five good groups,then corresponding VDTC of C9is f(n,n −9,i,n −8,n,n −7,i,n −6,n,n −5,i,n −4,n,n −3,i,n,i+8,n −1),f(n,n −8,i+1,n −7,n,n −6,i+1,n −5,n,n −4,i+1,n −3,n,n −2,i+1,n,n −1,i),f(n,n −7,i+2,n −6,n,n −5,i+2,n −4,n,n −3,i+2,n −2,n,i+2,n −1,n,i+7,n −2),f(n,n −6,i+3,n −5,n,n −4,i+3,n −3,n,n −2,i+3,n,n −1,i+6,n,n −2,i+6,n −3) and f(n,n −5,i+4,n −4,n,n −3,i+4,n −2,n,i+4,n −1,n,i+5,n −2,n,n −3,i+5,n −4),respectively. Case 2Let n ≥6,n ≡6(mod 9). The elements left in the 1, 2 and 3 -th columns of Ancan be partitioned into one good groups, then corresponding VDTC of C9is f(n,n −4,1,n −3,n,1,n −2,n −1,n,n −2,3,n,n −1,2,n,n −2,2,n −3). Let n ≥15,i ≡5(mod 9),5 ≤i ≤n−2. The elements left in the i,i+1,i+2,i+3,i+4,i+5,i+6,i+7 and i+8-th columns of Ancan be partitioned into five good groups,then corresponding VDTC of C9is f(n,n −9,i,n −8,n,n −7,i,n −6,n,n −5,i,n −4,n,n −3,i,n,i+8,n −1),f(n,n −8,i+1,n −7,n,n −6,i+1,n −5,n,n −4,i+1,n −3,n,n −2,i+1,n,n −1,i),f(n,n −7,i+2,n −6,n,n −5,i+2,n −4,n,n −3,i+2,n −2,n,i+2,n −1,n,i+7,n −2),f(n,n −6,i+3,n −5,n,n −4,i+3,n −3,n,n −2,i+3,n,n −1,i+6,n,n −2,i+6,n −3) and f(n,n −5,i+4,n −4,n,n −3,i+4,n −2,n,i+4,n −1,n,i+5,n −2,n,n −3,i+5,n −4).when n=15, the conclusion is obtained. Suppose n ≥24 as follows. Let n ≥24,i ≡6(mod 9),15 ≤i ≤n−2. The elements left in the i,i+1,i+2,i+3,i+4,i+5,i+6 and i+7-th columns of Ancan be partitioned into four good groups, then corresponding VDTC of C9is f(n,n −8,i,n −7,n,n −6,i,n −5,n,n −4,i,n −3,n,n −2,i,n,n −1,i+7),f(n,n −7,i+1,n −6,n,n −5,i+1,n −4,n,n −3,i+1,n −2,n,i+1,n −1,n,i+6,n −2),f(n,n −6,i+2,n −5,n,n −4,i+2,n −3,n,n −2,i+2,n,n −1,i+5,n,n −2,i+5,n −3) and f(n,n −5,i+3,n −4,n,n −3,i+3,n −2,n,i+3,n −1,n,i+4,n −2,n,n −3,i+4,n −4). Case 3Let n ≥9,n ≡0(mod 9). The elements left in the 1, 2, 3, 4, 5, 6 and 7 -th columns of Ancan be partitioned into three good groups, then corresponding VDTC of C9is f(n,n −7,1,n −6,n,n −5,1,n −4,n,n −3,1,n −2,n,7,n −1,n,6,n −2), f(n,n −6,2,n −5,n,n −4,2,n −3,n,n −2,2,n,n −1,5,n,n −2,5,n −3) and f(n,n −5,3,n −4,n,n −3,3,n −2,n,3,n −1,n,4,n −2,n,n −3,4,n −4). Let n ≥18,i ≡0(mod 9),0 ≤i ≤n−2. The elements left in the i,i+1,i+2,i+3,i+4,i+5,i+6 and i+7 -th columns of Ancan be partitioned into four good groups, then corresponding VDTC of C9is f(n,n −8,i,n −7,n,n −6,i,n −5,n,n −4,i,n −3,n,n −2,i,n,n −1,i+7),f(n,n −7,i+1,n −6,n,n −5,i+1,n −4,n,n −3,i+1,n −2,n,i+1,n −1,n,i+6,n −2),f(n,n −6,i+2,n −5,n,n −4,i+2,n −3,n,n −2,i+2,n,n −1,i+5,n,n −2,i+5,n −3) and f(n,n −5,i+3,n −4,n,n −3,i+3,n −2,n,i+3,n −1,n,i+4,n −2,n,n −3,i+4,n −4).when n=18, the conclusion is obtained. Suppose n ≥27 as follows. Let n ≥27,i ≡8(mod 9),17 ≤i ≤n−2. The elements left in the i,i+1,i+2,i+3,i+4,i+5,i+6,i+7 and i+8-th columns of Ancan be partitioned into five good groups,then corresponding VDTC of C9is f(n,n −9,i,n −8,n,n −7,i,n −6,n,n −5,i,n −4,n,n −3,i,n,i+8,n −1),f(n,n −8,i+1,n −7,n,n −6,i+1,n −5,n,n −4,i+1,n −3,n,n −2,i+1,n,n −1,i),f(n,n −7,i+2,n −6,n,n −5,i+2,n −4,n,n −3,i+2,n −2,n,i+2,n −1,n,i+7,n −2),f(n,n −6,i+3,n −5,n,n −4,i+3,n −3,n,n −2,i+3,n,n −1,i+6,n,n −2,i+6,n −3) and f(n,n −5,i+4,n −4,n,n −3,i+4,n −2,n,i+4,n −1,n,i+5,n −2,n,n −3,i+5,n −4). We can easily know that {n,1,n −1} do not belong to any good group. Lemma 3If n ≡4,8(mod 9),n ≥4, then all nonempty elements of Anexcept for{n,1,n −2}, {n,1,n −1} and {n,2,n −1} can be partitioned intogroups, such that each group has nine subsets and is good. ProofBy Lemma 1, we only consider the elements left of An. Case 1Let n ≥4,n ≡4(mod 9). Let i ≡1(mod 9), 1 ≤i ≤n −2, The three elements of Anis just the element left of An. Let n ≥13,i ≡3(mod 9), 3 ≤i ≤n −2. The elements left in the i, i+1, i+2, i+3, i+4,i+5, i+6, i+7 and i+8-th columns of Ancan be partitioned into five good groups, then corresponding VDTC of C9is f(n,n −5,i+1,n −4,n,n −3,i+1,n −2,n,i+1,n −1,i+5),f(n,n−4,i+2,n−3,n,n−2,i+2,n−1,n,n−2,i+4,n−1),f(n,n−5,i+7,n−4,n,n−3,i+7,n −2,n,i+7,n −1,i+11), f(n,n −4,i+8,n −3,n,n −2,i+8,n −1,n,n −2,i+10,n −1)and f(n,n −3,i+3,n −2,n,i+3,n −1,i+9,n,n −3,i+9,n −2), respectively. when n=13,the conclusion is obtained. Suppose n ≥22 as follows. Let n ≥22,i ≡4(mod 9),13 ≤i ≤n−2. The elements left in the i,i+1,i+2,i+3,i+4,i+5,i+6 and i+7 -th columns of Ancan be partitioned into four good groups, then corresponding VDTC of C9is f(n,n −8,i,n −7,n,n −6,i,n −5,n,n −4,i,n −3,n,n −2,i,n,n −1,i+7),f(n,n −7,i+1,n −6,n,n −5,i+1,n −4,n,n −3,i+1,n −2,n,i+1,n −1,n,i+6,n −2),f(n,n −6,i+2,n −5,n,n −4,i+2,n −3,n,n −2,i+2,n,n −1,i+5,n,n −2,i+5,n −3) and f(n,n −5,i+3,n −4,n,n −3,i+3,n −2,n,i+3,n −1,n,i+4,n −2,n,n −3,i+4,n −4),respectively. We can easily know that {n,1,n −2}, {n,1,n −1} and {n,2,n −1} do not belong to any good group. Case 2Let n ≥8,n ≡8(mod 9). The elements left in the 1, 2, 3, 4, 5 and 6-th columns of Ancan be partitioned into two good groups, then corresponding VDTC of C9is f(n,n −6,1,n −5,n,n −4,1,n −3,n,n −5,2,n −4,n,n −3,2,n,6,n −1)and f(n,n −4,3,n −3,n,n −2,3,n −1,n,n −3,4,n −2,n,4,n −1,n,5,n −2). Let n ≥17,i ≡7(mod 9), 7 ≤i ≤n −2. The elements left in the i, i+1, i+2, i+3, i+4,i+5, i+6, i+7 and i+8-th columns of Ancan be partitioned into five good groups, then corresponding VDTC of C9is f(n,n −5,i+1,n −4,n,n −3,i+1,n −2,n,i+1,n −1,i+5),f(n,n−4,i+2,n−3,n,n−2,i+2,n−1,n,n−2,i+4,n−1),f(n,n−5,i+7,n−4,n,n−3,i+7,n −2,n,i+7,n −1,i+11), f(n,n −4,i+8,n −3,n,n −2,i+8,n −1,n,n −2,i+10,n −1)and f(n,n −3,i+3,n −2,n,i+3,n −1,i+9,n,n −3,i+9,n −2), respectively. when n=17,the conclusion is obtained. Suppose n ≥26 as follows. Let n ≥26,i ≡8(mod 9),17 ≤i ≤n−2. The elements left in the i,i+1,i+2,i+3,i+4,i+5,i+6 and i+7 -th columns of Ancan be partitioned into four good groups, then corresponding VDTC of C9is f(n,n −8,i,n −7,n,n −6,i,n −5,n,n −4,i,n −3,n,n −2,i,n,n −1,i+7),f(n,n −7,i+1,n −6,n,n −5,i+1,n −4,n,n −3,i+1,n −2,n,i+1,n −1,n,i+6,n −2),f(n,n −6,i+2,n −5,n,n −4,i+2,n −3,n,n −2,i+2,n,n −1,i+5,n,n −2,i+5,n −3) and f(n,n −5,i+3,n −4,n,n −3,i+3,n −2,n,i+3,n −1,n,i+4,n −2,n,n −3,i+4,n −4),respectively. We can easily know that {n,1,n −2}, {n,1,n −1} and {n,2,n −1} do not belong to any good group. Lemma 4If n ≡5,7(mod 9),n ≥5, then all nonempty elements of Anexcept for{n,1,n −3}, {n,1,n −2}, {n,1,n −1}, {n,2,n −2}, {n,2,n −1} and {n,3,n −1} can be partitioned intogroups, such that each group has nine subsets and is good. ProofBy Lemma 1, we only consider the elements left of An. Case 1Let n ≥5,n ≡5(mod 9). Let i ≡1(mod 9), 1 ≤i ≤n −2. The six elements of Anis just the left element of An. Let n ≥14,i ≡5(mod 9),5 ≤i ≤n−2. The elements left in the i,i+1,i+2,i+3,i+4,i+5,i+6 and i+7 -th columns of Ancan be partitioned into four good groups, then corresponding VDTC of C9is f(n,n −8,i,n −7,n,n −6,i,n −5,n,n −4,i,n −3,n,n −2,i,n,n −1,i+7),f(n,n −7,i+1,n −6,n,n −5,i+1,n −4,n,n −3,i+1,n −2,n,i+1,n −1,n,i+6,n −2),f(n,n −6,i+2,n −5,n,n −4,i+2,n −3,n,n −2,i+2,n,n −1,i+5,n,n −2,i+5,n −3) and f(n,n −5,i+3,n −4,n,n −3,i+3,n −2,n,i+3,n −1,n,i+4,n −2,n,n −3,i+4,n −4),respectively. when n=14, the conclusion is obtained. Suppose n ≥23 as follows. Let n ≥23,i ≡4(mod 9), 13 ≤i ≤n −2. The elements left in the i, i+1, i+2, i+3, i+4,i+5, i+6, i+7 and i+8 -th columns of Ancan be partitioned into five good groups, then corresponding VDTC of C9is f(n,n −5,i+1,n −4,n,n −3,i+1,n −2,n,i+1,n −1,i+5),f(n,n−4,i+2,n−3,n,n−2,i+2,n−1,n,n−2,i+4,n−1),f(n,n−5,i+7,n−4,n,n−3,i+7,n −2,n,i+7,n −1,i+11), f(n,n −4,i+8,n −3,n,n −2,i+8,n −1,n,n −2,i+10,n −1)and f(n,n −3,i+3,n −2,n,i+3,n −1,i+9,n,n −3,i+9,n −2), respectively. We can easily know that {n,1,n −3}, {n,1,n −2}, {n,1,n −1}, {n,2,n −2}, {n,2,n −1}and {n,3,n −1} do not belong to any good group. Case 2Let n ≥7,n ≡7(mod 9). The elements left in the 1, 2, 3, 4 and 5-th columns of Ancan be partitioned into one good groups, then corresponding VDTC of C9is f(n,n −5,1,n −4,n,n −3,2,n −4,n,n −3,3,n −2,n,n −1,4,n,5,n −1). Let n ≥16,i ≡7(mod 9),7 ≤i ≤n−2. The elements left in the i,i+1,i+2,i+3,i+4,i+5,i+6 and i+7 -th columns of Ancan be partitioned into four good groups, then corresponding VDTC of C9is f(n,n −8,i,n −7,n,n −6,i,n −5,n,n −4,i,n −3,n,n −2,i,n,n −1,i+7),f(n,n −7,i+1,n −6,n,n −5,i+1,n −4,n,n −3,i+1,n −2,n,i+1,n −1,n,i+6,n −2),f(n,n −6,i+2,n −5,n,n −4,i+2,n −3,n,n −2,i+2,n,n −1,i+5,n,n −2,i+5,n −3) and f(n,n −5,i+3,n −4,n,n −3,i+3,n −2,n,i+3,n −1,n,i+4,n −2,n,n −3,i+4,n −4),respectively. when n=16, the conclusion is obtained. Suppose n ≥25 as follows. Let n ≥25,i ≡6(mod 9), 15 ≤i ≤n −2. The elements left in the i, i+1, i+2, i+3, i+4,i+5, i+6, i+7 and i+8-th columns of Ancan be partitioned into five good groups, then corresponding VDTC of C9is f(n,n −5,i+1,n −4,n,n −3,i+1,n −2,n,i+1,n −1,i+5),f(n,n−4,i+2,n−3,n,n−2,i+2,n−1,n,n−2,i+4,n−1),f(n,n−5,i+7,n−4,n,n−3,i+7,n −2,n,i+7,n −1,i+11), f(n,n −4,i+8,n −3,n,n −2,i+8,n −1,n,n −2,i+10,n −1)and f(n,n −3,i+3,n −2,n,i+3,n −1,i+9,n,n −3,i+9,n −2), respectively. We can easily know that {n,1,n −3}, {n,1,n −2}, {n,1,n −1}, {n,2,n −2}, {n,2,n −1}and {n,3,n −1} do not belong to any good group. Lemma 5If n ≡1,2(mod 9),n ≥10, then all elements of Anexcept forcan be partitioned intogroups, such that each group has exactly 9 subsets and is good. ProofBy Lemma 1, we only consider the elements left of An. Case 1Let n ≥10,n ≡1(mod 9). The elements left in the 1, 2, 3, 4, 5, 6, 7 and 8 -th columns of Ancan be partitioned into four good groups, then corresponding VDTC of C9is f(n,n−8,1,n−7,n,n−6,1,n−5,n,n−4,1,n−3,n,n−2,1,n,n−1,8),f(n,n−7,2,n−6,n,n−5,2,n−4,n,n−3,2,n−2,n,2,n−1,n,7,n−2),f(n,n−6,3,n−5,n,n−4,3,n−3,n,n−2,3,n,n−1,6,n,n−2,6,n−3)and f(n,n−5,4,n−4,n,n−3,4,n−2,n,4,n−1,n,5,n−2,n,n−3,5,n−4). Let n ≥18,i ≡0(mod 9), 0 ≤i ≤n −2. The elements left in the i, i+1, i+2, i+3, i+4,i+5, i+6, i+7 and i+8-th columns of Ancan be partitioned into five good groups, then corresponding VDTC of C9is f(n,n −5,i+1,n −4,n,n −3,i+1,n −2,n,i+1,n −1,i+5),f(n,n−4,i+2,n−3,n,n−2,i+2,n−1,n,n−2,i+4,n−1),f(n,n−5,i+7,n−4,n,n−3,i+7,n −2,n,i+7,n −1,i+11), f(n,n −4,i+8,n −3,n,n −2,i+8,n −1,n,n −2,i+10,n −1)and f(n,n −3,i+3,n −2,n,i+3,n −1,i+9,n,n −3,i+9,n −2), respectively. when n=18,the conclusion is obtained. Suppose n ≥28 as follows. Let n ≥28,i ≡1(mod 9),19 ≤i ≤n−2. The elements left in the i,i+1,i+2,i+3,i+4,i+5,i+6 and i+7 -th columns of Ancan be partitioned into four good groups, then corresponding VDTC of C9is f(n,n −8,i,n −7,n,n −6,i,n −5,n,n −4,i,n −3,n,n −2,i,n,n −1,i+7),f(n,n −7,i+1,n −6,n,n −5,i+1,n −4,n,n −3,i+1,n −2,n,i+1,n −1,n,i+6,n −2),f(n,n −6,i+2,n −5,n,n −4,i+2,n −3,n,n −2,i+2,n,n −1,i+5,n,n −2,i+5,n −3) and f(n,n −5,i+3,n −4,n,n −3,i+3,n −2,n,i+3,n −1,n,i+4,n −2,n,n −3,i+4,n −4),respectively. Case 2Let n ≥12,n ≡2(mod 9). The elements left in the 1, 2, 3, 4, 5, 6, 7, 8 and 9-th columns of Ancan be partitioned into five good groups, then corresponding VDTC of C9is f(n,n−9,1,n−8,n,n−7,1,n−6,n,n−5,1,n−4,n,n−3,1,n,9,n−1),f(n,n−8,2,n−7,n,n−6,2,n−5,n,n−4,2,n−3,n,n−2,2,n,n−1,1),f(n,n−7,3,n−6,n,n−5,3,n−4,n,n−3,3,n−2,n,i+2,n−1,n,8,n−2),f(n,n−6,4,n−5,n,n−4,4,n−3,n,n−2,4,n,n−1,7,n,n−2,7,n−3)and f(n,n −5,5,n −4,n,n −3,5,n −2,n,5,n −1,n,6,n −2,n,n −3,6,n −4), respectively. Let n ≥20,i ≡2(mod 9),2 ≤i ≤n−2. The elements left in the i,i+1,i+2,i+3,i+4,i+5,i+6 and i+7 -th columns of Ancan be partitioned into four good groups, then corresponding VDTC of C9is f(n,n −8,i,n −7,n,n −6,i,n −5,n,n −4,i,n −3,n,n −2,i,n,n −1,i+7),f(n,n −7,i+1,n −6,n,n −5,i+1,n −4,n,n −3,i+1,n −2,n,i+1,n −1,n,i+6,n −2),f(n,n −6,i+2,n −5,n,n −4,i+2,n −3,n,n −2,i+2,n,n −1,i+5,n,n −2,i+5,n −3) and f(n,n −5,i+3,n −4,n,n −3,i+3,n −2,n,i+3,n −1,n,i+4,n −2,n,n −3,i+4,n −4),respectively. when n=20, the conclusion is obtained. Suppose n ≥29 as follows. Let n ≥29,i ≡1(mod 9),19 ≤i ≤n−2. The elements left in the i,i+1,i+2,i+3,i+4,i+5,i+6,i+7 and i+8-th columns of Ancan be partitioned into five good groups,then corresponding VDTC of C9is f(n,n −9,i,n −8,n,n −7,i,n −6,n,n −5,i,n −4,n,n −3,i,n,i+8,n −1),f(n,n −8,i+1,n −7,n,n −6,i+1,n −5,n,n −4,i+1,n −3,n,n −2,i+1,n,n −1,i),f(n,n −7,i+2,n −6,n,n −5,i+2,n −4,n,n −3,i+2,n −2,n,i+2,n −1,n,i+7,n −2),f(n,n −6,i+3,n −5,n,n −4,i+3,n −3,n,n −2,i+3,n,n −1,i+6,n,n −2,i+6,n −3) and f(n,n −5,i+4,n −4,n,n −3,i+4,n −2,n,i+4,n −1,n,i+5,n −2,n,n −3,i+5,n −4),respectively. The proof is completed. How to obtain the optimal vertex-distinguishing total coloring of mC9(i.e. which use the minimum number of colors)? Firstly, let 2 ≤m ≤406, we determine the vertex-distinguishing total coloring of mC9. When m = 406, VDTC of mC9has used 29 colors and all 3-subsets of the set {1,2,··· ,29} of all colors used are the color sets of vertices in mC9, i.e, all 3-subsets of{1,2,··· ,29}has been used up. Secondly,we will give k−V DTC of mC9using colors 1,2,··· ,k whenrecursively. Finally,mC9are colored by the colors 1,2,··· ,k. Actually,k −V DTC ofcolored by the colors 1,2,··· ,k are only needed. Because of lettingthe restriction of k −V DTC ofin the former m C,9s is the k −V DTC of mC9. When the number of colors used in coloring varies from 3 to 29, the left 3-subsets in each cases are listed in Table-1. Table-1 Procedure of algorithm on the optimal VDTC ofmC9. For given m ≥2, find positive integer k such thatIf in some step the optimal vertex-distinguishing total coloring f ofhas been given, then the procedure should be stopped and optimal VDTC of mC9will be obtained by restricting f in first m C,9s. Step 1When m=2, χvt(mC9)≥6. The 6-VDTC of mC9will be given as follows. We use f(1,2,3,4,1,2,4,3,2,5,1,3,5,4,2,3,5,4)to color the first C9,all the color sets of 9 vertices in the first C9are given in the lines of n = 3,4,5 in Table 1 except {5,3,4}, the second C9can be obtained by Lemma 2, and all 3−element subsets of {1,2,··· ,6} except for {5,3,4},{6,1,5} are used up. When m=3, χvt(mC9)≥7, then based on the 6-VDTC of 2C9, we can obtain a k-VDTC of the three C9by Lemma 4, and all 3−element subsets of {1,2,··· ,7} except for {5,3,4},{6,1,5}, {7,1,4}, {7,1,5}, {7,1,6}, {7,2,5}, {7,2,6}, {7,3,6} are used up. When 4 ≤m ≤6, χvt(mC9) ≥8, then based on the 7-VDTC of 3C9, we can obtain a k-VDTC of the fourth, fifth C9by Lemma 3. These { {5,3,4}, {6,1,5}, {7,1,4}, {7,1,5},{7,1,6}, {7,2,5}, {7,2,6}, {7,3,6}, {8,1,6} } of unused 3−element subsets consist of a good group. We use the coloring f(1,6,5,3,4,7,1,5,7,1,6,7,2,5,7,3,6,8) to color the six-th C9, all the color sets of 9 vertices in the six-th C9are given in the lines of n = 5,6,7,8 in Table-1 except {8,1,7}, {8,2,7}, and all 3- element subsets of {1,2,··· ,8} except for {8,1,7}, {8,2,7}are used up. If a 3-subset of {1,2,··· ,k} is a color set of a vertex of mC9under a k-VDTC g of mC9,then this 3-subset is called used up under g. When 7 ≤m ≤9, χvt(mC9) ≥9, then based on the 8-VDTC of 6C9, we can obtain a k-VDTC of the seventh, eighth, ninth C9by Lemma 2, and all 3−element subsets of{1,2,··· ,9}except for {8,1,7}, {8,2,7}, {9,1,8} are used up. When 10 ≤m ≤13, χvt(mC9) ≥10, then based on the 9-VDTC of 9C9, we can obtain a k-VDTC of the tenth, eleventh, twelfth, thirteenth C9by Lemma 5, and all 3−element subsets of {1,2,··· ,10} except for {8,1,7}, {8,2,7}, {9,1,8} are used up. When 14 ≤m ≤18, χvt(mC9)≥11, then based on the 10-VDTC of 13C9, we can obtain a k-VDTC of the 14,15,··· ,18-th C9by Lemma 5, and all 3−element subsets of {1,2,··· ,11}except for {8,1,7}, {8,2,7}, {9,1,8} are used up. When 19 ≤m ≤24, χvt(mC9)≥12, then based on the 11-VDTC of 18C9, we can obtain a k-VDTC of the 19,20,··· ,24-th C9by Lemma 2, and all 3−element subsets of {1,2,··· ,12}except for {8,1,7}, {8,2,7}, {9,1,8}, {12,1,11} are used up. When 25 ≤m ≤31, χvt(mC9)≥13, then based on the 12-VDTC of 24C9, we can obtain a k-VDTC of the 25,26,··· ,31-th C9by Lemma 3, and all 3−element subsets of {1,2,··· ,13}except for{8,1,7},{8,2,7},{9,1,8},{12,1,11},{13,1,11},{13,1,12},{13,2,12}are used up. When 32 ≤m ≤40,χvt(mC9)≥14,then based on the 13-VDTC of 31C9,we can obtain a k-VDTC of the 32,33,··· ,40-th C9by Lemma 4. These{{8,1,7}, {8,2,7}, {9,1,8}, {12,1,11},{13,1,11}, {13,1,12}, {13,2,12}, {14,1,12}, {14,1,13} } of unused 3−element subsets consist of a good group. We use the coloring f(1,8,7,2,8,9,1,12,11,13,1,12,13,2,12,1,14,13) to color the 40-th C9, all the color sets of 9 vertices in the 40-th C9are given in the lines of n = 8,9,12,13,14 in Table-1 except {14,1,11}, {14,2,13}, {14,2,12}, {14,3,13}, and all 3-element subsets of {1,2,··· ,14} except for {14,1,11}, {14,2,13}, {14,2,12}, {14,3,13} are used up. When 41 ≤m ≤50, χvt(mC9)≥15, then based on the 14-VDTC of 40C9, we can obtain a k-VDTC of the 41,42,··· ,50-th C9by Lemma 2, and all 3−element subsets of {1,2,··· ,15}except for {14,1,11}, {14,2,13}, {14,2,12}, {14,3,13}, {15,1,14} are used up. When 51 ≤m ≤62, χvt(mC9) ≥16, then based on the 15-VDTC of 51C9, we can obtain a k-VDTC of the 51,52,··· ,62-th C9by Lemma 4. These { {14,1,11}, {14,2,12}, {14,3,13},{15,1,14},{16,1,13},{16,1,15},{16,2,14},{16,2,15},{14,2,13}}of unused 3−element subsets consist of a good group. We use the coloring f(1,11,14,13,2,12,14,3,13,16,1,14,15,16,2,14,16,15) to color the 62-th C9, all the color sets of 9 vertices in the 62-th C9are given in the lines of n = 14,15,16 in Table-1 except {16,1,14}, {16,3,15}, and all 3- element subsets of{1,2,··· ,16} except for {16,1,14}, {16,3,15} are used up. When 63 ≤m ≤75, χvt(mC9)≥17, then based on the 16-VDTC of 62C9, we can obtain a k-VDTC of the 63,64,··· ,75-th C9by Lemma 3, and all 3−element subsets of {1,2,··· ,17}except for {16,1,14}, {16,3,15}, {17,1,15}, {17,1,16}, {17,2,16} are used up. When 76 ≤m ≤90, χvt(mC9)≥18, then based on the 17-VDTC of 75C9, we can obtain a k-VDTC of the 76,77,··· ,90-th C9by Lemma 2, and all 3−element subsets of {1,2,··· ,18}except for {16,1,14}, {16,3,15}, {17,1,15}, {17,1,16}, {17,2,16}, {18,1,17} are used up. When 91 ≤m ≤107,χvt(mC9)≥19,then based on the 18-VDTC of 91C9,we can obtain a k-VDTC of the 91,92,··· ,107-th C9by Lemma 5, and all 3−element subsets of {1,2,··· ,19}except for {16,1,14}, {16,3,15}, {17,1,15}, {17,1,16}, {17,2,16}, {18,1,17} are used up. When 108 ≤m ≤126, χvt(mC9) ≥20, then based on the 19-VDTC of 107C9, we can obtain a k-VDTC of the 108,109,··· ,126-th C9by Lemma 5, and all 3−element subsets of{1,2,··· ,20} except for {16,1,14}, {16,3,15}, {17,1,15}, {17,1,16}, {17,2,16}, {18,1,17}are used up. When 127 ≤m ≤147, χvt(mC9) ≥21, then based on the 20-VDTC of 126C9, we can obtain a k-VDTC of the 127,128,··· ,147-th C9by Lemma 2, and all 3−element subsets of{1,2,··· ,21} except for {16,1,14}, {16,3,15}, {17,1,15}, {17,1,16}, {17,2,16}, {18,1,17},{21,1,20} are used up. When 148 ≤m ≤171, χvt(mC9) ≥22, then based on the 21-VDTC of 147C9, we can obtain a k-VDTC of the 148,149,··· ,171-th C9by Lemma 3. These { {16,1,14}, {16,3,15},{17,1,15}, {17,1,16}, {17,2,16}, {18,1,17}, {21,1,20}, {22,1,20}, {22,1,21} } of unused 3−element subsets consist of a good group. We use the coloring f(1,14,16,3,15,1,17,2,16,1,17,18,1,21,20,1,22,21) to color the 171-th C9, all the color sets of 9 vertices in the 171-th C9are given in the lines of n = 16,17,18,21,22 in Table-1 except {22,2,21}, and all 3- element subsets of {1,2,··· ,22} except for {22,2,21} are used up. When 172 ≤m ≤196, χvt(mC9) ≥23, then based on the 22-VDTC of 171C9, we can obtain a k-VDTC of the 172,173,··· ,196-th C9by Lemma 4, and all 3−element subsets of{1,2,··· ,23} except for {22,2,21}, {23,1,20}, {23,1,21}, {23,1,22}, {23,2,21}, {23,2,22},{23,3,22} are used up. When 197 ≤m ≤224, χvt(mC9) ≥24, then based on the 23-VDTC of 196C9, we can obtain a k-VDTC of the 197,198,··· ,224-th C9by Lemma 2, and all 3−element subsets of{1,2,··· ,24} except for {22,2,21}, {23,1,20}, {23,1,21}, {23,1,22}, {23,2,21}, {23,2,22},{23 ,3,22}, {24,1,23} are used up. When 225 ≤m ≤255, χvt(mC9) ≥25, then based on the 24-VDTC of 224C9, we can obtain a k-VDTC of the 225,226,··· ,255-th C9by Lemma 4. These { {22,2,21}, {23,1,20},{23,1,21}, {23,1,22}, {23,2,21}, {23,2,22}, {23,3,22}, {25,1,22}, {25,1,23} } of unused 3−element subsets consist of a good group. We use the coloring f(1,20,23,1,21,2,22,1,23,21,2,22,23,3,22,1,25,23)to color the 255-th C9,all the color sets of 9 vertices in 255-th C9are given in the lines of n = 22,23,25 in Table-1 except {25,1,24}, {25,2,23}, {25,2,24}, {25,3,24},{24,1,23},and all 3-element subsets of{1,2,··· ,25}except for{25,1,24},{25,2,23},{25,2,24},{25,3,24}, {24,1,23} are used up. When 256 ≤m ≤288, χvt(mC9) ≥26, then based on the 25-VDTC of 255C9, we can obtain a k-VDTC of the 256,257,··· ,288-th C9by Lemma 3, and all 3−element subsets of{1,2,··· ,26} except for {25,1,24}, {25,2,23}, {25,2,24}, {25,3,24}, {24,1,23}, {26,1,24},{26,1,25}, {26,2,25} are used up. When 289 ≤m ≤325, χvt(mC9) ≥27, then based on the 26-VDTC of 288C9, we can obtain a k-VDTC of the 289,290,··· ,325-th C9by Lemma 2. These { {25,1,24}, {25,2,23},{25,2,24}, {25,3,24}, {24,1,23}, {26,1,24}, {26,1,25}, {26,2,25}, {27,1,26} } of unused 3−element subsets consist of a good group. We use the coloring f(1,23,24,1,25,2,24,3,25,23,2,25,26,24,1,25,26,27) to color the 325-th C9, all the color sets of 9 vertices in the 325-th C9are given in the lines of n=24,25,26,27 in Table-1,and all 3-element subsets of{1,2,··· ,27}are used up. When 326 ≤m ≤364, χvt(mC9) ≥28, then based on the 27-VDTC of 325C9, we can obtain a k-VDTC of the 326,327,··· ,364-th C9by Lemma 5, and all 3−element subsets of{1,2,··· ,28} are used up. When 365 ≤m ≤406, χvt(mC9) ≥29, then based on the 28-VDTC of 364C9, we can obtain a k-VDTC of the 365,366,··· ,406-th C9by Lemma 5, and all 3−element subsets of{1,2,··· ,29} are used up. Now 406C9has been already colored using colors 1,2,··· ,29. When m ≥407, let 9m ≤k =30, goto Step 2. Step 2If k ≡3(mod 27), then based on thewe can obtain a k-VDTC ofby Lemma 2, and all 3−element subsets of {1,2,··· ,k} except for{k,1,k −1} are used up. Step 3If k ≡4(mod 27), then based on the (k −1)-VDTC ofwe can obtain a k-VDTC ofby Lemma 3,and all 3−element subsets of{1,2,··· ,k}except for {k −1,1,k −2}, {k,1,k −2}, {k,1,k −1}, {k,2,k −1} are used up. Step 4If k ≡5(mod 27), then based on the (k −1)-VDTC of, we can obtain a k-VDTC of−10]C9by Lemma 4. These {{k −2,1,k −3},{k −1,1,k −3},{k −1,1,k −2},{k −1,2,k −2},{k,1,k −3},{k,1,k −2},{k,1,k −1},{k,2,k −2},{k,2,k −1}} of unused 3−element subsets consist of a good group. We use the coloring f(1,k −3,k −2,k −1,1,k −3,k −1,k −2,2,k,1,k −2,k,k −1,2,k −2,k,k −1) to color the−1]C9-th, and all 3- element subsets of {1,2,··· ,k} except for {k,3,k −1} are used up. Step 5If k ≡6(mod 27), then based on the (k −1)-VDTC of, we can obtain a k-VDTC ofby Lemma 2,and all 3−element subsets of{1,2,··· ,k}except for {k −1,3,k −2}, {k,1,k −1} are used up. Step 6If k ≡7(mod 27), then based on the (k −1)-VDTC ofwe can obtain a k-VDTC ofby Lemma 4, and all 3−element subsets of {1,2,··· ,k}except for{k −2,3,k −3}, {k −1,1,k −2}, {k,1,k −3}, {k,1,k −2}, {k,1,k −1}, {k,2,k −2},{k,2,k −1}, {k,3,k −1} are used up. Step 7If k ≡8(mod 27), then based on the (k −1)-VDTC ofwe can obtain a k-VDTC ofby Lemma 3. These { {k −3,3,k −4}, {k −2,1,k −3},{k−1,1,k−4},{k−1,1,k−3},{k−1,1,k−2},{k−1,2,k−3},{k−1,2,k−2},{k−1,3,k−2},{k,1,k −2} } of unused 3−element subsets consist of a good group. We use the coloring f(1,k −2,k −3,3,k −4,k −1,1,k −3,k −1,1,k −2,k −1,2,k −3,k −1,3,k −2,k)to color theand all 3- element subsets of {1,2,··· ,k} except for {k,1,k −1}, {k,2,k −1}are used up. Step 8If k ≡9(mod 27), then based on the (k −1)-VDTCwe can obtain a k-VDTC ofby Lemma 2,and all 3−element subsets of{1,2,··· ,k}except for {k −1,1,k −2}, {k −1,2,k −2} are used up. Step 9If k ≡10(mod 27), then based on the (k −1)-VDTC ofwe can obtain a k-VDTC ofby Lemma 5,and all 3−element subsets of{1,2,··· ,k}except for {k −2,1,k −3}, {k −2,2,k −3}, {k −1,1,k −2} are used up. Step 10If k ≡11(mod 27), then based on the (k −1)-VDTC ofwe can obtain a k-VDTC ofby Lemma 5, and all 3−element subsets of {1,2,··· ,k}except for {k −3,1,k −4}, {k −3,2,k −4}, {k −2,1,k −3} are used up. Step 11If k ≡12(mod 27), then based on the (k −1)-VDTC ofcan obtain a k-VDTCC9by Lemma 2, and all 3−element subsets of {1,2,··· ,k}except for {k −4,1,k −5}, {k −4,2,k −5}, {k −3,1,k −4}, {k,1,k −1} are used up. Step 12If k ≡13(mod 27), then based on the (k −1)-VDTC of, we can obtain a k-VDTC ofby Lemma 3, and all 3−element subsets of {1,2,··· ,k}except for {k −5,1,k −6}, {k −5,2,k −6}, {k −4,1,k −5}, {k −1,1,k −2}, {k,1,k −2},{k,1,k −1}, {k,2,k −1} are used up. Step 13If k ≡14(mod 27), then based on the (k −1)-VDTC ofwe can obtain a k-VDTC ofby Lemma 4. These { {k −6,1,k −7}, {k −6,2,k −7},{k −5,1,k −6}, {k −2,1,k −3}, {k −1,1,k −3}, {k −1,1,k −2}, {k −1,2,k −2}, {k,1,k −2},{k,1,k −1} } of unused 3−element subsets consist of a good group. We use the coloring f(1,k −6,k −7,2,k −6,k −5,1,k −2,k −3,k −1,1,k −2,k −1,2,k −2,1,k,k −1)to color theand all 3- element subsets of {1,2,··· ,k} except for {k,1,k −3}, {k,2,k −2},{k,2,k −1}, {k,3,k −1} are used up. Step 14If k ≡15(mod 27), then based on the (k −1)-VDTC ofwe can obtain a k-VDTC of−5]C9by Lemma 2, and all 3−element subsets of {1,2,··· ,k}except for {k −1,1,k −4}, {k −1,2,k −3}, {k −1,2,k −2}, {k −1,3,k −2}, {k,1,k −1} are used up. Step 15If k ≡16(mod 27), then based on the (k −1)-VDTC ofwe can obtain a k-VDTC of11]C9by Lemma 4. These { {k −2,1,k −5}, {k −2,2,k −4},{k −2,2,k −3}, {k −2,3,k −3}, {k −1,1,k −2} {k,1,k −3}, {k,2,k −1}, {k,2,k −2},{k,2,k −1} } of unused 3−element subsets consist of a good group. We use the coloring f(1,k −5,k −2,k −3,2,k −4,k −2,3,k −3,k,1,k −2,k −1,k,2,k −2,k,k −1) to color the2]C9-th, and all 3- element subsets of {1,2,··· ,k} except for {k,1,k −2}, {k,3,k −1}are used up. Step 16If k ≡17(mod 27), then based on the (k −1)-VDTC ofwe can obtain a k-VDTC ofby Lemma 5, and all 3−element subsets of {1,2,··· ,k}except for {k −1,1,k −3}, {k −1,3,k −2}, {k,1,k −2}, {k,1,k −1}, {k,2,k −1} are used up. Step 17If k ≡18(mod 27), then based on the (k −1)-VDTC ofwe can obtain a k-VDTC ofby Lemma 2, and all 3−element subsets of {1,2,··· ,k}except for {k −2,1,k −4}, {k −2,3,k −3}, {k −1,1,k −3}, {k −1,1,k −2}, {k −1,2,k −2},{k,1,k −1} are used up. Step 18If k ≡19(mod 27), then based on the (k −1)-VDTC ofwe can obtain a k-VDTC ofby Lemma 5, and all 3−element subsets of {1,2,··· ,k}except for {k −3,1,k −5}, {k −3,3,k −4}, {k −2,1,k −4}, {k −2,1,k −3}, {k −2,2,k −3},{k −1,1,k −2} are used up. Step 19If k ≡20(mod 27), then based on the (k −1)-VDTC ofwe can obtain a k-VDTC ofby Lemma 5, and all 3−element subsets of {1,2,··· ,k }except for {k −4,1,k −6}, {k −4,3,k −5}, {k −3,1,k −5}, {k −3,1,k −4}, {k −3,2,k −4},{k −2,1,k −3} are used up. Step 20If k ≡21(mod 27), then based on the (k −1)-VDTC ofwe can obtain a k-VDTC ofby Lemma 2, and all 3−element subsets of {1,2,··· ,k}except for {k −5,1,k −7}, {k −5,3,k −6}, {k −4,1,k −6}, {k −4,1,k −5}, {k −4,2,k −5},{k −3,1,k −4}, {k,1,k −1} are used up. Step 21If k ≡22(mod 27), then based on the (k −1)-VDTC ofwe can obtain a k-VDTC ofby Lemma 3. These { {k −6,1,k −8}, {k −6,3,k −7},{k −5,1,k −7}, {k −5,1,k −6}, {k −5,2,k −6}, {k −4,1,k −5}, {k −1,1,k −2}, {k,1,k −2},{k,1,k −1} } of unused 3−element subsets consist of a good group. We use the coloring f(1,k −8,k −6,3,k −7,1,k −5,2,k −6,1,k −5,k −4,1,k −1,k −2,1,k,k −1) to color theand all 3- element subsets of {1,2,··· ,k} except for {k,2,k −1} are used up. Step 22If k ≡23(mod 27), then based on the (k −1)-VDTC ofwe can obtain a k-VDTC ofby Lemma 4, and all 3−element subsets of {1,2,··· ,k}except for {k −1,2,k −2}, {k,1,k −3}, {k,1,k −2}, {k,1,k −1}, {k,2,k −2}, {k,2,k −1},{k,3,k −1} are used up. Step 23If k ≡24(mod 27), then based on the (k −1)-VDTC ofwe can obtain a k-VDTC ofby Lemma 2, and all 3−element subsets of {1,2,··· ,k}except for {k −2,2,k −3}, {k −1,1,k −4}, {k −1,1,k −3}, {k −1,1,k −2}, {k −1,2,k −3},{k −1,2,k −2}, {k −1,3,k −2}, {k,1,k −1} are used up. Step 24If k ≡25(mod 27), then based on the (k −1)-VDTC ofwe can obtain a k-VDTC ofby Lemma 4. These { {k −3,2,k −4}, {k −2,1,k −5},{k −2,1,k −4}, {k −2,1,k −3}, {k −2,2,k −4}, {k −2,2,k −3}, {k −2,3,k −3}, {k,1,k −3},{k,1,k −2} } of unused 3−element subsets consist of a good group. We use the coloring f(1,k −5,k −2,1,k −4,2,k −3,1,k −2,k −4,2,k −3,k −2,3,k −3,1,k,k −2) to color theand all 3-element subsets of{1,2,··· ,k}except for{k−1,1,k−2},{k,1,k−1},{k,2,k −2}, {k,2,k −1}, {k,3,k −1} are used up. Step 25If k ≡26(mod 27), then based on the (k −1)-VDTC of, we can obtain a k-VDTC ofby Lemma 3, and all 3−element subsets of {1,2,··· ,k}except for {k −2,1,k −3}, {k −1,1,k −2}, {k −1,2,k −3}, {k −1,2,k −2}, {k −1,3,k −2},{k,1,k −2}, {k,1,k −1}, {k,2,k −1} are used up. Step 26If k ≡0(mod 27), then based on the (k −1)-VDTC ofwe can obtain a k-VDTC ofby Lemma 2. These { {k −3,1,k −4}, {k −2,1,k −3},{k−2,2,k−4},{k−2,2,k−3},{k−2,3,k−3},{k−1,1,k−3},{k−1,1,k−2},{k−1,2,k−2},{k,1,k −1} } of unused 3−element subsets consist of a good group. We use the coloring f(1,k −4,k −3,1,k −2,2,k −3,3,k −2,k −4,2,k −2,k −1,k −3,1,k −2,k −1,k) to color the-th, and all 3- element subsets of {1,2,··· ,k} are used up. Step 27If k ≡1(mod 27), then based on the (k −1)-VDTC ofwe can obtain a k-VDTC ofby Lemma 5, and all 3−element subsets of {1,2,··· ,k} are used up.§3. The Thought of Algorithm
§4. Procedure of Algorithm
Chinese Quarterly Journal of Mathematics2019年3期