鸽巢问题

2019-09-10 05:55傅勇
科学导报·学术 2019年31期
关键词:笔筒抽屉铅笔

傅勇

鸽巢问题

教材第68、第69頁。

1. 在了解简单的“鸽巢问题”的基础上,使学生会用此原理解决简单的实际问题。

2. 提高学生有根据、有条理地进行思考和推理的能力。

3. 通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。

重点:引导学生把具体问题转化成“鸽巢问题”。

难点:找出“鸽巢问题”解决的窍门进行反复推理。

铅笔、笔筒、书等。

师:任意的13位同学中,至少有几位同学在同一个月过生日?任意的367位同学中,至少有几位同学在同一天过生日?试一试。

师:想知道答案吗?通过今天的学习,你就能解决这个问题了。下面我们就来研究这类问题,我们先从简单的情况入手研究。

【设计意图:紧紧扣住学生的好奇心,从学生喜欢的生日问题开始,激活认知热情。使学生积极投入到对问题的研究中。同时,渗透研究问题的方法和建模的数学思想】

1. 讲授例1。

(1)认识“抽屉原理”。(课件出示例题)

把4支铅笔放进3个笔筒中,那么总有一个笔筒里至少放进2支铅笔。

学生读一读上面的例题,想一想并说一说这个例题中说了一件怎样的事。

教师指出:上面这个问题,同学们不难想出其中的道理,但要完全清楚地说明白,就需给出证明。

(2)学生分小组活动进行证明。

活动要求:

①学生先独立思考。

②把自己的想法和小组内的同学交流。

③如果需要动手操作,要分工并全面考虑问题。(谁分铅笔、谁当笔筒即“抽屉”、谁记录等)

④在全班交流汇报。

(3)汇报。

师:哪个小组愿意说说你们是怎样证明的?

①列举法证明。

学生证明后,教师提问:把4支铅笔放进3个笔筒里,共有几种不同的放法?

(共有4种不同的放法。在这里只考虑存在性问题,即把4支铅笔不管放进哪个笔筒,都视为同一种情况)

根据以上4种不同的放法,你能得出什么结论?(总有一个至少放进2支铅笔)

②数的分解法证明。

可以把4分解成三个数,共有四种情况:(4,0,0),(3,1,0),(2,2,0),(2,1,1),每一种结果的三个数中,至少有一个数是不小于2的。

③反证法(或假设法)证明。

让学生试着说一说,教师适时指点:

假设先在每个笔筒里放1支铅笔。那么,3个笔筒里就放了3支铅笔。还剩下1支铅笔,放进任意一个笔筒里,那么这个笔筒里就有2支铅笔。

(4)揭示规律。

请同学们继续思考:

①把5支铅笔放进4个笔筒中,那么总有一个笔筒里至少放进几支铅笔,为什么?

②如果把6支铅笔放进5个笔筒中,结果是否一样呢?把7支铅笔放进6个笔筒中呢?把10支铅笔放进9个笔筒中呢?把100支铅笔放进99个笔筒中呢?

学生回答的同时教师板书:

数量(支) 笔筒数(个)  结果

5 总有一个笔筒里

提问:观察板书,你有什么发现?

③小组讨论,引导学生得出一般性结论。

(只要放的铅笔数比笔筒的数量多1,总有一个笔筒里至少放进2支铅笔)

追问:如果要放的铅笔数比笔筒的数量多2,多3,多4呢?

学生根据具体情况思考并解决此类问题。

④教师小结。

上面我们所证明的数学原理就是最简单的“抽屉原理”,可以概括为:把m个物体任意放到m-1个抽屉里,那么总有一个抽屉中至少放进了2个物体。

2.教学例2。

师:把7本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3本书。为什么?自己想一想,再跟小组的同学交流。

学生独立思考后,进行小组交流:教师巡视了解情况。

组织全班交流,学生可能会说:

我们可以动手操作,选用列举的方法:

通过操作,我们把7本书放进3个抽屉,总有一个抽屉至少放进3本书。

·我们可以用数的分解法:把7分解成三个数,有(7,0,0),(6,1,0),(5,1,1),(4,1,2),(3,1,3),(3,2,2)这样六种情况。在任何一种情况中,总有一个数不小于3。

师:同学们,通过上面两种方法,我们知道了把7本书放进3个抽屉,不管怎么放,总有1个抽屉里至少放进3本书。但随着书的本书增多,数据变大,如果有8本书会怎样呢?10本呢?甚至更多呢?用列举法、数的分解法会怎样?(繁琐)我们能不能找到一种适用各种数据的一般方法呢?请同学们自己想一想。

学生进行独立思考。

师:假设把书尽量的“平均分”给各个抽屉,看每个抽屉能分到多少本书,你们能用什么算式表示这一平均分的过程呢?

生:7÷3=2……1

师:有余数的除法算式说明了什么问题?

生:把7本书平均放进3个抽屉,每个抽屉放2本书,还剩1本:把剩下的1本不管放到哪个抽屉,总有一个抽屉至少放3本书。

师:如果有8本书会怎样呢?

生:8÷3=2……2,可以知道把8本书平均放进3个抽屉,每个抽屉放2本书,还剩2本:把剩下的2本中的1本不管放到哪个抽屉,总有一个抽屉至少放3本书。

师:10本书呢?

生:10÷3=3……1,可知把10本书平均放进3个抽屉,每个抽屉放3本书,还剩1本:把剩下的1本不管放到哪个抽屉,总有一个抽屉至少放4本书。

师:你发现了什么?

师生共同小结:要把a个物体放进n个抽屉,如果a÷n=b……c(c≠0),那么一定有一个抽屉至少放(b+1)个物体。

【设计意图:在渗透研究问题、探索规律时,先从简单的情况开始研究。证明过程中,展示了不同学生的证明方法和思维水平,使学生既互相学习、触类旁通,又建立“建模”思想,突出了学习方法】

师:通过今天的学习,你有什么收获?

生:物体数除以抽屉数,那么总会有一个抽屉里放进比商多1的物体个数。

师:你能在生活中找出这样的例子吗?

学生举例说明。

师:之所以把这个规律称之为“原理”,是因为在我们的生活中存在着许多能用这个原理解决的问题,研究出这个规律是非常有价值的。同学们继续努力吧!

【设计意图:研究的问题来源于生活,还要还原到生活中去。在教学的最后,请学生总结这节课学会的规律,再让学生举一些能用“鸽巢问题”解释的生活现象,以达到巩固应用的目的】

猜你喜欢
笔筒抽屉铅笔
“鼠来宝”笔筒
暗中取袜
猫爪铅笔帽
谁是小偷
小小铅笔,大有来头
抽屉男孩
我的抽屉
智力测试
无敌笔筒