一种基于决策树的认知无线电信号调制识别方法*

2019-09-04 06:01,陈
通信技术 2019年7期
关键词:决策树高阶特征提取

高 轶 ,陈 通

(1.解放军91404部队,河北 秦皇岛 066001;2.中国电子科技集团公司第三十研究所,四川 成都 610041)

0 引 言

随着通信系统的不断发展,无线频谱资源也变得日益稀缺,认知无线电(Cognitive Radio,CR)从众多技术中脱颖而出,已成为目前最有前景的解决方案之一,如美国国防频谱组织(Defense Spectrum Organization,DSO)提出的全球电磁频谱信息系统(Global Electro-Magnetic Spectrum Information System,GEMSIS)等。认知无线电允许未授权用户基于对周围电磁环境的感知和人工智能决策判断,动态的发现空闲频谱从而适时调整参数接入,大大地提高了频谱利用率[1]。然而,在认知无线电系统中,由于接收端没有先验信息可用,因此必须对信号进行正确识别,否则不能判定该信号是否属于合理的通信链路。信号调制类型识别在认知无线电收发过程中具有十分重要的作用,是实现后续参数估计和信号解调的前提, 近年来对调制识别的研究已引起众多学者和机构的关注,并推动其在动态频谱管理和干扰识别中发挥越来越大的价值,也能为认知电子战中的信号处理提供参数依据。

基于模式统计的信号调制识别方法一般可分为两大类[2]:基于统计特征的识别方法和基于最大似然的识别方法,第一种方法更为常用,因为其不需要先验条件且计算复杂度相对较低。通常来说,调制类型识别算法包括预处理、特征提取和分类几个步骤,其中特征提取环节能够从预处理后的数据中提取出信号关键特征,是完成下一步分类判决的基础,但仅仅依靠单一类型的特征量如统计参数、高阶累积量和小波变换特征等是无法取得良好识别效果的,因此必须联合多种特征参数且通过合理的分类决策思路以提高调制识别的性能。学者K.C.Ho和Y.T.Chan曾提出了一种基于小波变换的识别算法,这种方法通过信号的小波分解后提取调制特征,计算效果较好,然而因为仅采用了一种特征导致识别范围非常有限,且只适用于基带通信信号[3];研究人员Swami A和Sadler BM还分析了一种根据多种累积量特征进行识别的思路,其中的分类器比较复杂,难于实现[4]。

针对上述问题,本文在多类型统计特征提取的基础上,提出了一种基于决策树的认知无线电信号调制识别方法,实时性强,便于工程实现。该方法将各方面特征包括瞬时特征与高阶统计量进行融合分析,提高了对认知无线电信号在低信噪比条件下的识别性能。在分类决策环节,基于新改进的决策树判决思想,提高了分类识别的鲁棒性,对信噪比不敏感。该方法的通用性好,可识别各种典型的模拟调制和数字调制信号包括AM(Amplitude Modulation,幅度调制)、FM(Frequency Modulation,频率调制)、LSB(Lower Side-Band,下边带)调制、USB(Upper Side-Band,上边带)调制、ASK(Amplitude Shift Keying,振幅键控)调制、FSK(Frequency Shift Keying,频移键控)调制、PSK(Phase Shift Keying,相移键控)调制和QAM(Quadrature Amplitude Modulation,正交幅度调制)等。

1 信号识别模型分析

认知无线电系统接收端的信号模型技术表达式一般都可用下式表示:

其中y(n)表示实际接收到的信号,s(n)表示发射的原始调制信号,w(n)表示传输信道中的高斯噪声,均值为0,方差为2σ2。并且,可把s(n)和w(n)视为两个相互独立的零均值随机过程。再将相偏和频偏代入前面的接收信号表达式,可得其完整的定义式如下:

其中,φ0表示相偏,f0表示频偏,y(n)是I/Q复信号的形式。

如何对信号的调制类型实现识别可视为一个典型的模式识别问题,图1表示对认知无线电信号调制识别的思路流程框图。

图1 信号调制识别总体流程框图

首先把系统接收端收到的通信信号进行滤波、正交变频等预处理操作,然后通过从信号样本中提取出有用的参数特征,包含时频域特征和其他各种变换域特征。对于复杂的信道环境,前面的预处理模块需要在一定程度上实现降噪、去干扰等,保证特征提取模块输入合适的信号数据。在调制分类部分,主要采用分类器进行分析计算,进一步精确区分判断出信号的样式,因此设计合理的分类器是十分关键的,会影响调制识别准确率,通常的有统计模式结构、神经网络型结构分类器、决策型结构分类器等,其中决策型结构分类器实现比较简单,更符合工程实际应用。

2 算法分析和改进

2.1 特征提取思路分析

特征提取是调制识别过程中的重要内容,也是后续分类判决信号的前提。信号的调制特征参数具有多样性,通过特征提取可以计算得出不同调制类型的差别信息,需要选择不仅复杂度相对较小,而且消耗样本点较少的算法模块。本文对一些主要的通信信号调制特征进行了改进分析,包括瞬时特征统计参数和高阶统计量两方面特征。

(1)瞬时特征参数

传统的特征只适用于理想环境,须事先获取很多其它参数条件,并且计算量大,识别时间长。经过优化改进,提取出归一化中心瞬时幅度、归一化中心瞬时频率和谱对称性等特征,其稳定度高,更易确定判决门限值。下面进行详细说明——

1)归一化中心瞬时幅度谱密度的最大值

此种调制特征的计算表达式为:

其中,acn(n)表示接收信号r(n)的归一化中心瞬时幅度,N表示信号r(n)的采样点总数,FFT(·)表示离散傅里叶变换处理。

归一化瞬时幅度特征量的计算表达式为:acn(n)=anorm(n)-1,这里的它表示信号r(n)第n个采样点的归一化中心瞬时幅度,ma表示幅度向量的均值。通过对幅度进行归一化处理,可以补偿各种未知信道中的衰减。

2)归一化中心瞬时频率绝对值的标准差

此种调制特征的计算表达式为:

其中,L表示满足条件anor(i)>ath的信号采样点数目,ath表示可区分信号和噪声的门限,这里的

fN代表信号样本的归一化中心瞬时频率特征,设采样率为fs,则可进一步得出:

3)谱对称性的估计量

此种调制特征的计算表达式为:

其中,对于上式各变量有:

并且,式(8)中的Yc(n)表示信号的离散傅里叶变换,fcn表示对应于载频fc的采样点数,且fs表示采样率。因此,fcn可由下式给出:

(2)高阶统计量特征

接收到的认知无线电信号复包络的高阶统计量特征(例如二阶统计量、四阶统计量和八阶统计量等),可用以下计算式表示为:

其中,信号y(n)的矩Mx0可定义为下面的表达式:

式(16)中的Ns表示接收信号的传输符号数量。

由于高斯噪声的二阶统计量值为0,因此信号的高阶统计量可以抑制噪声的影响,起到良好的降噪效果。通过不同阶数的高阶统计量变换处理,能够构造出一个提供多种不同类型特征信息的信号变换域,实现信号的分类识别。另一方面,高阶统计量可体现出调制信号的非线性特点,有利于对更多类型信号的分析和处理;信号的高阶矩和多谱还含有相位信息,可以更全面地描绘了信号本身的参数特征,扩大识别范围。

但是由于实际环境中信号频偏的影响会降低性能,因此本文在这里引入了一种改进的相关统计量特征,其相关函数可表示为z(n)=r(n)·r*(n-1),能够将变化的频偏量有效转换为固定相位偏移量,方便计算,这里的z(n)表示滤除噪声和能量归一化后的待识别信号。

表1给出了认知无线电系统中BPSK(Binary Phase Shift Keying,二进制相移键控),QPSK(Quadrature Phase Shift Keyin,正交相移键控),8PSK,16PSK,4ASK,8QAM,16QAM,32QAM和64QAM等调制类型信号的相关统计量特征典型值。

表1 调制信号的改进相关统计量

2.2 分类器思路分析

决策树型分类器通常采取多级分类的结构,可以识别出非常广泛的信号调制类型,且实现思路相对明确简单,实时性强,分类准确率较优。过去的决策树分类算法多数以二叉树为主,每次判决时仅把输入信号分成两种,然后逐级地再对单一的数字调制信号和模拟信号进行比较区别。

为了更好地进行决策分类,可紧密结合之前提取的调制信号关键特征作出精细颗粒度的识别,本文采用了一种多层次的决策树分类思路,将几种决策树并行分析处理,能够使得形式更加简化,识别性能提升,可识别的类型包括AM、FM、SSB(Single Side Band, 单 边 带)、(LSB-USB)、BPSK、QPSK、8PSK、16PSK、4ASK、2FSK、4FSK、GMSK(Gaussian Filtered Minimum Shift Keying,高斯最小频移键控)、8QAM、16QAM、32QAM和64QAM。

(1)模拟调制信号的决策树识别

模拟信号的调制识别一共可利用三种特征,前

两种分别是前述的式(7)定义的谱对称性估计特征量及其绝对值,且第三种特征则采用瞬时相位的标准差,在之间重新映射以避免相位的跳变,可由下式给出:

其中,φ(n)表示n个信号采样点的瞬时相位,L表示接收信号r(n)的采样点数量,且满足条件anorm>ath,此处的μφ代表r(n)的L点瞬时相位的均值。

基于特征的决策树框图可用来识别各种模拟调制信号,如图2所示。首先,算法将模拟调制信号进行归一化,其均值为零;然后,计算出分类特征量σφ,P和|P|。在判决流程中,引入了特征σφ来区分AM调制信号与下边带的FM-SSB调制信号。接下来,再通过特征量|P|区分出FM调制信号与下边带的SSB调制信号;最后,基于特征量P能区分出LSB信号与USB信号。

图2 模拟调制信号的分类决策树结构

(2)数字调制信号的决策树识别

本文采用了改进的分层决策树结构,可更高效的实现对数字调制信号的识别。具体包括两个层次:第一层级,可识别4ASK、2FSK、4FSK、GMSK、BPSK、MPSK(Multiple Phase Shift Keying, 多 进制数字相位调制)和MQAM(Multiple Quadrature Amplitude Modulation,多进制正交幅度调制)调制信号,在该层无法精细区分MPSK调制及MQAM调制(M≥4),因为相同的特征值只能适用于唯一的调制簇。所以在第二层级中,修改了传统判决思路,在决策树中使用了特征γmax和σacn与另两种优化特征量:1)在式(17)中的特征σφ;2)γmax与归一化瞬时幅度的标准差σacn的融合特征,其表达式可由式(18)给出:

其中,对于参数σacn有:

如图3所示,新特征可区别出BPSK调制和其它调制子集{MFSK,MQAM,GMSK,4ASK};然后,利用σφ特征量能够分辨出4ASK调制和{MFSK,MQAM,GMSK};通过计算特征σfN,可区分GMSK和MFSK调制;最后,采取γmax与σacn的融合特征,成功地识别MPSK和MQAM调制。

图3 数字调制信号分类决策树结构

图4展示了基于高阶统计量的决策树结构,可识别QPSK、8PSK和16PSK调制。可利用统计量C40的绝对值将QPSK与{8PSK,16PSK}区分,然后再根据C80特征的绝对值来区分8PSK和16PSK。

图4 基于高阶统计量的分类决策树结构

3 仿真结果及性能分析

为了验证本文识别方法的有效性,采用MATLAB软件进行仿真。仿真参数:信号的采样率设为100 MHz,载频为60 MHz,码速率为2 Mbit/s,采样点数为2 048,Monte-Carlo仿真次数为1 000次,噪声为加性高斯白噪声。

仿真实验1:采用本文中基于决策树的方法进行认知无线电信号调制识别,得出对各种模拟和数字信号调制类型的正确识别率。仿真结果如图5所示,其中横轴表示信噪比,单位dB,纵轴表示对信号的识别概率,不同形状的曲线代表不同的调制类型。

图5 本文方法对各调制样式的正确识别率曲线

从图5中可以看出,本文中的改进方法是一种有效的认知无线电信号调制类型识别方法,在信噪比为大于7 dB时,对各调制种类的识别正确概率可达到95%以上。

仿真实验2:分别对传统的方法和本文中新改进方法进行识别性能的仿真对比分析。实验设置的参数条件与仿真实验1的相同,仿真结果如图6所示,横轴表示信噪比,纵轴表示不同方法的识别概率。

图6 改进方法与传统方法的性能比较

由上述仿真结果可以得出,新方法比起过去一些传统的调制识别方法具有更好的性能,适用于实际认知无线电系统应用中对数字调制、模拟调制信号的处理。

4 结 语

随着认知无线电系统的不断发展,信号的调制类型的作用越来越重要,所处的无线环境也日益复杂,给调制识别算法的研究提出了更高的要求。本文提出了一种基于决策树的调制识别改进方法。通过仿真试验表明了该方法比起过去一些传统识别算法性能较优,实现结构更加简化,稳定性好。今后还将进一步拓展,为解决更广泛应用情况下信号调制类型识别问题提供更有效的手段,并且也为无线监测、智能化通信等领域的研究贡献力量。

猜你喜欢
决策树高阶特征提取
基于决策树和神经网络的高血压病危险因素研究
滚动轴承寿命高阶计算与应用
基于高阶LADRC的V/STOL飞机悬停/平移模式鲁棒协调解耦控制
空间目标的ISAR成像及轮廓特征提取
基于Gazebo仿真环境的ORB特征提取与比对的研究
基于特征提取的绘本阅读机器人设计方案
高阶思维介入的高中英语阅读教学
基于Daubechies(dbN)的飞行器音频特征提取
决策树和随机森林方法在管理决策中的应用
决策树多元分类模型预测森林植被覆盖