郑亮
【摘 要】21世纪,各国的教育体系、模式、内容和管理均发生重大变革,向开放式、网络化、终身化和普遍提高人的素质和基本能力为中心的学习型社会过渡。近些年,国内高校由于招生规模的逐年扩大、新校区的大规模建设,随之而来的是管理人员、教学资源短缺,管理混乱与发展滞后,面临着前所未有的挑战。同样,高校学生管理工作的繁杂性和艰巨性也大大增加,传统的学生管理思维、模式和方法已不能满足现阶段高校实际需要。为提高管理水平,构建现代新型的管理工作模式已经提上日程,而大数据是解决该问题的有效途径之一。
【关键词】大数据;数据共享;决策模型;决策支持
一、相关概念
1.大数据
目前对大数据的定义有很多,根据维克托·迈尔-舍恩伯格的定义,大数据(big data),指的是所涉及的数据量规模巨大到无法通过目前传统软件工具,在合理时间内达到撷取、管理、处理、整理成为帮助企业经营决策更积极目的的信息。虽然说法不一,但在研究者们看来,大数据有以下几个明显的特征,就是 4 个“V”,即:Volume(大量 )、Velocity(高速 )、Variety(多样 )、Veracity(真实)。但我们认为,除了以上四个特点,实际上,大数据与三个重大的思维转变有关,这三个转变是相互联系和相互作用的:首先,要分析与某事物相关的所有数据,而不是依靠分析少量的数据样本;其次,我们乐于接受数据的纷繁复杂,而不再追求精确性;最后,我们的思想发生了转变,不再探求难以捉摸的因果关系,转而关注事物的相关关系。
2.高校学生管理大数据
学生从入学、学习、生活、毕业的整个活动周期中,在各个信息管理系统如档案信息、课程学习、考试成绩、日常管理、网络使用、文体活动、图书借阅、毕业设计等各个电子行为活动中留下了大量的记录信息。这些数据建设有助于将学生管理工作者从日常的具体事务性工作中解脱出来,解决运用传统手段难以获取各类统计数据的问题,从中挖掘出有价值的信息,经过过程性和综合性的分析,找到学生各种行为之间的内在联系,思考背后的逻辑关系,并做出恰当的教学、管理决策,这才能被称为高校大数据,如何挖掘这些数据的价值来有效服务高校学生管理是一个有意义的尝试。
二、高校学生管理大数据现状与问题分析
虽然目前各高校的学生管理信息化已经取得巨大的进步,少数高校也开始尝试进行大数据利用的探索,目前的现状是,由于学生人数众多、数据治理和技术等方面的问题,导致利用高校大数据成为学生管理工作中的一大难点,存在很多问题,总结为以下几个方面:
1.高校大数据管理混乱,没有形成统一完整的大数据管理体系
面对一些学校的快速发展,信息量的大幅度增长和数据的快速更新变化,而高校的大数据管理职能部门仍无确立,管理模式没有变化,传统的数据管理方式和管理手段已经远远不能适应高校大数据管理工作的需要,同时更加分散的信息处理和更新导致了大量的重复性劳动,从而导致了学生信息紊乱,数据一致性差,严重影响了信息的准确性和完整性,给高校的大数据管理工作带来了诸多不便,严重影响了大数据使用成效。
2.信息孤岛大量存在,数据质量差
在信息化建设过程中,由于各部门开发或购买了面向特定领域功能、基于不同技术和应用模式的业务管理系统,导致数据交换通用性较差,难以实现现有系统数据信息的兼容共享,数据利用率较低。同时在数据录入与各系统间数据交换的环节中缺乏对数据质量的控制,经常出现数据维护不及时、不准确、不完整、随意性等问题,导致数据的质量较差。
3.高校数据分析的传统思维影响
在很多高校, 大多是通过调查问卷和样本数据来进行分析和推断,但是统计抽样其实只是为了在技术受限的特定时期解决当时存在的一些特定問题而产生的。在大数据时代进行抽样分析,就像是在汽车时代骑马一样。在某些特定的情况下,我们依然可以使用样本分析法,但这不再是我们分析数据的主要方式。以上原因是导致国内高校在大数据利用与分析方面效果不佳的主要原因,其他如大数据利用的观念与意识、信息化素养、数据治理管理体制等多方面也影响到数据分析与利用。
三、基于大数据的高校学生管理的研究与实践
当代社会文明是建立在数据文明的基础之上,高校学生管理大数据平台应当是构建多层次、多方位的有机系统,同时应该是“全样本”数据采集平台,必须融合高校所有相关部门的所有数据记录, 按照标准、规范、安全、高效的特征,整合到统一的大数据交换共享平台中,实现各部门数据之间的无缝交换、共享、集成,同时要充分发挥相关部门的主动性、积极性,明确部门的职、责、权,构建一个统一、完整、多层次、智能、安全、可靠的大数据管理平台,为学生管理工作者提供管理决策依据,促进学生管理与决策科学化。
在建设过程中,我们确立了“以人为本,服务师生,服务教学,服务管理,服务决策”的建设目标,在实践中取得了一些成效,下面就基于大数据的高校学生管理简要介绍我们的一些思考与实践。
1.建立决策模型
我们认为,整个高校学生管理大数据建设目标就是要合理地利用学生管理大数据,在满足学生管理部门需求的同时,也要为师生提供数据服务,为学校领导提供数据统计分析和决策支持,即应具备多层次的智能服务功能,确保每一个层次的人员都要受益,才能促进有效决策,按照分层原则,确立并通过若干个具体的且对实现学校学生管理目标有重要作用的关键业务指标(KPI)来实现分层决策支持,促进学生管理者科学决策。
2.建立大数据标准
为确保实现数据的集成和共享、有效积累,参照教育部出台的《高等学校管理信息标准》“学生管理数据子集”中的规范,结合学校实际情况,建立学生基础信息编码规范和数据子集规范,统一学生编码,确保学生的编码唯一;统一部门编码,保证部门编码的唯一;统一所有业务系统的数据编码,保证业务数据的准确;同时制订编码和数据的管理、更新、维护规范。
3.建立大数据交换共享平台,实现数据共享
我们构建的大数据共享平台整合了全校所有业务信息系统的数据,实现了大数据的一个显著特征——记录所有数据,包括教务系统、考试系统、科研系统、图书系统、人事系统、资产系统等所有与学生管理相关的记录信息,实现了各系统间信息的互联互通,实现了数据共享,从根本上消除了信息孤岛,使业务系统内部、系统之间的频繁、复杂的信息流畅通,完成由数据源到数据集成再到数据分析应用的一个完整过程,为大数据的分析与统计提供坚实的数据基础。