于洪洲
(中国石化胜利油田分公司勘探开发研究院,山东东营257015)
近年来,准噶尔盆地西北缘火山岩储层作为主 要勘探目的层,取得了一系列重大油气突破,先后发现克拉玛依、白碱滩、乌尔禾、百口泉和红山嘴等油田[1-2]。哈山地区位于准噶尔盆地西北缘哈-德构造带西段,属于哈山山前冲断带的一部分,主要经历了6个构造演化阶段,其中以中—晚二叠纪的强烈逆冲推覆和三叠纪的冲断叠加变形最为强烈,形成了该区石炭系火山岩的强烈逆冲推覆改造叠加[3-5],也有效改善了火山岩的储集物性,成为研究区重要的含油气层系。哈山1、哈浅6等多口探井在石炭系火山岩推覆体中钻遇油气显示并获得工业油流,展现出良好的勘探前景[6]。钻探效果及前人研究成果[7-10]表明,火山岩优势储层是控制油气富集程度的关键因素之一。不同于构造稳定区的火山岩,哈山地区石炭系火山岩遭受了多期逆冲推覆改造叠加[11],其原始的火山机构遭受破坏,火山岩的岩性和岩相序列更为复杂,优势储层发育及分布是制约火山岩勘探部署的关键问题。
前人对准噶尔盆地西北缘石炭系火山岩储层、裂缝发育特征及控制因素等方面做了大量研究工作[6-7],主要侧重于岩性、构造、风化淋滤、成岩作用等对火山岩储层控制作用的定性评价,但对复杂构造带火山岩岩性的识别、各种因素对储层影响的范围、优势储层成因模式等方面的研究却甚少。为此,笔者根据野外露头观测、钻井岩心观察、岩石薄片、铸体薄片、元素分析等结果并辅助成像测井解释成果,重点剖析哈山复杂构造带火山岩的岩性识别、储层特征及控制因素,探讨优势储层发育及分布模式,以期为研究区有利储层预测及目标优选提供依据。
图1 哈山地区区域构造位置及火山岩分布Fig.1 Regional tectonic location and volcanic rocks distribution of Hashan area
哈山地区及周缘火山岩主要发育于上石炭统哈拉阿拉特山组,形成于陆缘岛弧或与残留洋盆有关的岛弧背景[7]。受石炭纪以来多期构造运动的改造叠加,研究区发育多期次逆冲推覆构造,使得其火山岩纵向上多期叠置、平面上叠合连片(图1)。综合三维地震、重力、电法等资料分析火山岩分布特征,结果表明,研究区火山岩主要分布于哈山中西部哈浅3至夏12井区,勘探面积为780 km2,厚度为1 450~5 000 m,埋深为2 000~6 000 m。
1.2.1 测井响应特征
与常规碎屑岩不同的是火山岩的成因及岩性较为复杂[12],因此需在火山岩岩心描述、露头观察、薄片鉴定的基础上,确定火山岩的岩石类型。由哈山地区石炭系10口取心井198 m岩心观察、12个露头剖面观测和35块样品薄片鉴定及统计分析结果可知,研究区火山岩按成因可以分为火山熔岩和火山碎屑岩2大类,其中火山熔岩类主要有玄武岩、安山岩和玄武安山岩3种岩性,火山碎屑岩类包括火山角砾岩和凝灰岩2种岩性。
准噶尔盆地石炭系火山岩测井资料显示,不同岩性的火山岩测井响应特征具有较大差异(表1)。从统计结果可以看出,研究区玄武岩具有高密度、高电阻率、低自然伽马、低声波时差和中等中子孔隙度,表现为“两高两低加一中”特征;在成像测井图像上,多呈块状构造,部分呈层状构造。安山岩具有中高密度、高电阻率、中等自然伽马、中低声波时差和中低中子孔隙度,表现为“一高四中”特征;在成像测井图像上,表现为高阻块状特征。玄武安山岩的常规和成像测井响应特征与安山岩较为相似。火山角砾岩具有中低密度、中高电阻率、中高中子孔隙度、中高声波时差的特征;在成像测井图像上,火山角砾一般呈高阻亮色,分布于砾间的为低阻暗色充填物。凝灰岩具有高声波时差、中高电阻率、中低密度和中低中子孔隙度,自然伽马随着成分由基性至酸性的变化呈逐渐增加的特征;在成像测井图像上,表现为多条较浅、断续、亮色条带或黄色斑状特征,岩石晶屑呈亮色斑点。
表1 哈山地区火山岩测井响应特征Table1 Logging response characteristics of volcanic rocks in Hashan area
图2 哈山地区火山岩岩性识别图版Fig.2 Lithologic identification of volcanic rocks in Hashan area
1.2.2 岩性识别
火山岩岩性识别是储层研究的基础,钻井取心及分析化验资料仅可以对局部层段的岩性进行精细刻画,但对于厚度更大的非取心段岩性的识别则显得更为重要。针对研究区构造改造作用强、岩性复杂多样的特点,采用交汇图版法将地质参数转化为定量的测井数据,进而建立岩性识别图版,并开展火山岩岩性的综合判别。
相对于火山岩,沉积岩具有高中子孔隙度、低电阻率的测井响应特征;以补偿中子测井为横坐标,电阻率为纵坐标,建立火山岩与沉积岩岩性识别图版(图2a),可以很好的区分沉积岩和火山岩。
对火山岩化学成分反映最为敏感的测井曲线为自然伽马和密度,电阻率次之。以自然伽马为横坐标,密度为纵坐标,建立火山碎屑岩与火山熔岩的岩性识别图版(图2b),可以看出火山熔岩发育区位于下斜线以下,火山碎屑岩发育区位于上斜线以上,过渡岩性发育区位于两条斜线之间。统计结果表明:从基性到酸性火山岩,放射性增强,密度降低。总体上,火山熔岩的放射性要高于火山碎屑岩,其密度也具有较高的特征。
火山岩从熔岩向碎屑岩的过渡,造成熔岩区与碎屑岩区有一定重叠,玄武岩、安山岩及玄武安山岩也有一定的重叠区域,特别是安山岩与玄武安山岩的重叠区域较多。针对以上岩性重叠区,采用M-N交汇图消除孔隙度对测井值的影响,可以较好的区分玄武安山岩和安山岩(图2c)。在GR-DEN交汇图上,安山质凝灰岩与安山质火山角砾岩的重叠区域较大,根据凝灰岩电阻率明显低于火山角砾岩、平均密度也稍低于火山角砾岩的差异性,结合logRt-DEN交汇图可以较好的区分安山质凝灰岩和安山质火山角砾岩[13](图2d)。
研究区火山岩岩性识别与统计结果表明,火山熔岩类的玄武岩和安山岩所占比例较高(54.9%),火山碎屑岩类的火山角砾岩、凝灰岩所占比例中等(44.7%),沉凝灰岩及流纹岩等岩性的含量则较少(0.4%)。在平面上,哈山1、哈山3等井区主要发育火山熔岩,哈浅3、哈浅6等井区主要发育火山碎屑岩。
图3 哈山地区火山岩主要储集空间类型Fig.3 Main storage types of volcanic rocks in Hashan area
储集空间类型及发育程度是影响火山岩储集性能的重要因素[14-16],火山岩喷发及后期的改造是形成多类型储集空间的基础。岩心观察、铸体薄片及扫描电镜分析结果表明,研究区火山岩储集空间包括孔隙和裂缝2大类共16种类型。
研究区火山熔岩类的玄武岩、安山岩等发育的原生孔隙以原生气孔为主,次生孔隙以斑晶溶孔、杏仁溶孔、基质溶孔、粒内溶孔和粒间溶孔为主;火山碎屑岩类孔隙类型主要有粒间孔和粒间溶孔,其次为粒内溶孔、晶内溶孔和基质内溶孔等(图3)。
哈山地区多期逆冲推覆构造活动强烈,构造缝是其主要的裂缝类型[6-7]。统计结果表明,研究区火山岩储集空间以构造缝和溶蚀缝等次生裂缝为主,溶蚀孔次之,原生孔缝相对较少,也进一步反映出该区火山岩储层遭受较强的后期构造及溶蚀改造作用。
由哈山地区相邻地区、相同层位的火山岩物性特征分析结果可知,其储集物性与岩性密切相关[7,14-15]。从研究区不同岩性火山岩的孔隙度、渗透率统计结果可以看出,火山碎屑岩类的火山角砾岩、凝灰岩的孔隙度和渗透率相对较高,孔隙度为9.4%~24.3%,平均为14.5%,渗透率为5.2~52.8 mD,平均为27.1 mD;火山熔岩类的安山岩的孔隙度和渗透率次之,孔隙度为2.3%~14.1%,平均为6.2%,渗透率为0.1~62.3 mD,平均为8.4 mD;玄武岩的孔隙度平均为3.6%,渗透率平均为0.2 mD;而沉凝灰岩的储集物性最差。由此看来,研究区火山角砾岩、凝灰岩、安山岩的储集物性最好。
火山岩的形成背景及喷发方式决定其火山机构类型、岩性组合及早期成岩作用类型等方面存在较大差异,进而也导致火山岩的后期抗风化溶蚀能力和造缝能力的差异[17],即火山岩的岩性和岩相控制了储层原生储集空间类型及后期可能改造的程度。由研究区数百米岩心及矿物含量的统计结果可知,石炭系岛弧不同部位对应的岩性组合、造缝潜力、溶蚀程度等控制了优势储层的发育(图4)。岛弧中心部位及近端的岩性组合以爆发相和溢流相互层为主,岩性以安山岩、火山角砾岩、凝灰岩为主,脆性矿物和不稳定矿物含量高,导致抗压强度小,更易被溶蚀,储层更发育;而远端岩性组合主要以沉凝灰岩、凝灰质砂岩夹薄层凝灰岩为主,抗压强度大,不易被溶蚀,储层发育程度低。
由此来看,岩性和岩相控制了优质储层发育的潜力,以岛弧中心及近端成储条件最为优越,裂谷远端储层发育程度较差或不发育储层。
图4 哈山地区石炭系岛弧建造火山岩成储条件综合评价Fig.4 Comprehensive evaluation of volcanic reservoir formation in Carboniferous island arc in Hashan area
风化淋滤和溶蚀作用主要发生于不整合面、火山喷发旋回和喷发期次界面。不整合面经过长期的风化淋滤剥蚀,通常形成风化壳型储层[17];喷发旋回和喷发期次的间歇期存在一定时间的暴露,发生风化淋滤作用以及深层酸性流体的溶蚀作用,对储层具有一定的改善作用,且往往发育在岩体单个旋回或期次的顶部,为油气的主要储集层段[18-21]。
哈山地区在石炭纪末发生较强的剥蚀,这也为火山岩储层的进一步改造提供了有利条件。通过研究区15口井500余组物性数据的统计分析,可以定量评价风化淋滤和溶蚀作用对储层的改造程度和优势储层的发育厚度。从孔隙度与距风化壳顶界面深度关系的统计结果可以看出,随着距风化壳顶界面深度的增大,风化淋滤和溶蚀作用对储层的改造程度降低,孔隙度也逐渐降低。风化壳对储层物性的影响深度一般小于210 m,其中距风化壳顶界面0~60 m,储层物性最好,孔隙度最高达25%,平均为19%。从孔隙度与喷发旋回、喷发期次界面深度关系的统计结果来看,喷发旋回界面对储层的影响深度小于150 m,喷发期次界面对火山岩储层的影响小于73 m。
进一步研究发现,每期喷发旋回界面之下均发育较好的淋滤改造型储层,厚度约为40 m;孔隙度一般为10%~20%,平均为14.5%;渗透率为0.2~59 mD,平均为14.4 mD。从含油性来看,喷发旋回界面之下的储层含油性整体较好,一般为油迹、油斑显示,也反映出火山喷发间歇期的风化淋滤作用对火山岩储层物性具有改善作用。
由于多期挤压构造应力作用,在火山岩中形成不同规模的断裂和裂隙,这些裂隙在改善储层渗滤性能的同时,还有效地增大了储层的储集空间[6,22-23]。哈山地区发育构造缝、溶蚀缝和风化缝3种类型,以构造缝对储层的改造作用最大。统计结果显示,研究区主要发育近WE,NEE—SWW及NNE—SSE向3组构造缝,以70°~90°的高角度裂缝为主,裂缝间距主要为2~5 cm,长度主要为3~5 m。裂缝充填物包括方解石、黄铁矿、硅质、绿泥石、有机质(沥青、油迹)等,其中构造缝的充填度最低,以未充填缝(占所有裂缝的比例为55%)、局部充填-半充填缝(占所有裂缝的比例为31%)发育为主,油气显示主要为富含油、油斑和荧光级别;其次为全充填缝(占所有裂缝的比例为14%),仅局部见荧光显示。由此来看,裂缝的发育不仅可以改善火山岩的储集性能,也与油气显示程度具有密切的相关性,表现出无缝不成藏的特征;因此,裂缝有利发育带是油气富集成藏的关键要素之一。
图5 哈山地区火山岩储层成因模式Fig.5 Genetic model of volcanic reservoir in Hashan area
受火山岩形成环境、构造背景和后期改造作用的影响,研究区火山岩储层在不同构造位置受岩性和岩相、构造作用、风化淋滤作用的影响具有较大的差异,进而造成不同构造单元的储层成因及发育特征也存在差异。根据这些差异特征可以将哈山地区火山岩划分为岩相-断裂型和岩相-褶皱型2种储层成因模式。
该成因模式储层的发育主要受断裂和风化淋滤作用控制,储集空间类型以构造缝、溶蚀孔缝为主,储层呈蜂窝状分布,有利储层主要发育于推覆体前端(图5a)。例如哈浅6井区推覆体的火山岩储层主要发育于火山角砾岩、凝灰岩和安山岩中,推覆体前端上部的储集空间类型以原生孔缝、构造缝、溶蚀孔为主,孔隙度一般为7.4%~18.6%,平均为13.1%,渗透率为2~52.8 mD,平均为24.2 mD,储层物性较好;喷发旋回和喷发期次界面控制的储层分布范围分别为80和40 m,断裂控制的储层分布范围约为2 km。推覆体前端下部的储集空间类型以原生孔缝、构造缝为主,孔隙度一般为4.2%~16%,平均为8.1%,渗透率为0.2~41.2 mD,平均为5.7 mD,储层物性较好。推覆体后翼以原生孔缝为主,孔隙度一般为1.3%~4.9%,平均为3.1%,渗透率为0.01~0.09 mD,平均为0.05 mD,储层物性相对较差。
该成因模式储层的发育主要受岩性和岩相、褶皱作用的控制,储集空间类型以原生孔和溶蚀孔为主,有利储层呈透镜状分布,主要发育于推覆体前翼和核部(图5b)。例如哈深2井区推覆体,其火山岩储层主要发育于火山角砾岩、安山岩和流纹岩中,推覆体前端的储集空间类型以原生孔缝、构造缝、溶蚀孔为主,孔隙度一般为0.1%~7.8%,平均为3.6%,渗透率为0.1~1.3 mD,平均为0.6 mD;喷发旋回和喷发期次界面控制的有利储层范围分别为100和60 m,裂缝主要发育于中等-强曲率区域。推覆体核部的储集空间类型以原生孔缝、构造缝和溶蚀孔为主,孔隙度一般为2.2%~11.4%,平均为5.6%,渗透率为0.004~6.7 mD,平均为0.9 mD,储层物性较好;喷发旋回和喷发期次界面控制的储层分布范围分别为100和60 m,裂缝主要发育在较强曲率区域。推覆体后翼以原生孔缝和溶蚀孔为主,孔隙度一般小于5%,渗透率一般小于0.2 mD,储层物性相对较差。
总体而言,受岩性和岩相、后期改造作用的共同控制,在哈山地区石炭系火山岩推覆体前翼、核部的中上部,裂缝和溶蚀孔发育程度高,为储层发育有利区,是寻找有效储层的首选目标;而推覆体后翼多属于低孔低渗透储层,是勘探的高风险区。
准西北缘哈山地区石炭系火山岩主要发育于岛弧环境,由火山熔岩类的玄武岩、安山岩、玄武安山岩和火山碎屑岩类的火山角砾岩、凝灰岩2大类5种岩性组成。火山岩的岩性和岩相是影响火山岩储层发育的内在因素,以岛弧中心及近端成储条件最为优越;风化淋滤和构造作用是外在因素,风化淋滤作用主要发生于风化壳、火山喷发旋回和期次界面之下,定量评价其对储层物性影响的深度分别达210,150和73 m。受原始建造和后期改造的共同作用,将研究区石炭系火山岩储层划分为岩相-断裂型和岩相-褶皱型2种成因模式;在推覆体前翼和核部、断裂交汇处风化壳、喷发旋回与期次界面的火山角砾岩、凝灰岩、安山岩发育区为火山岩优势储层分布区,是油气勘探的有利区带。