蒲秀刚,时战楠,韩文中,2,彭雪梅,张 伟,祝必兴
(1.中国石油大港油田公司勘探开发研究院,天津300280;2.中国石油大学(华东)地球科学与技术学院,山东青岛266580;3.中国石油大港油田公司勘探事业部,天津300280)
细粒沉积岩是指粒径小于62.5 μm的黏土级及粉砂级沉积物占比超过50%所形成的岩类,约占总沉积岩的2/3[1],对于这类分布极为广泛的岩类,其研究程度还相对较低。过去地质工作者习惯将细粒沉积岩所组成的地层统称为页岩层系,认为这类地层主要为大套块状、简单均质的高黏土、低陆源碎屑的烃源岩,且受到超微观实验条件的限制,对这类细粒沉积岩缺少足够的重视和深入的研究,一直是地质学界研究的薄弱领域之一[2]。20世纪80年代之前,细粒沉积岩仅以肉眼观察的岩性、产状的简单描述为主[3-4];至80年代末,认识到利用显微镜鉴定可以提高细粒沉积岩岩石定名的准确性等[5];90年代后,受北美页岩油商业性开采的启示,逐步开始对细粒沉积岩的混合机制、控制因素、岩相类型等开展较为深入的研究[6-11]。近年来,页岩油已逐步成为重要的能源接替领域之一,据美国能源信息署评估,全球页岩油技术可采储量为469×108t,其中中国达到 44.8×108t[12-14]。前人的研究及勘探实践证实,沧东凹陷孔二段页岩层系具备形成页岩油的良好地质条件及勘探潜力[15-20],但目前的研究仍停留在基于传统岩性(命名为泥页岩、泥质灰云岩、白云质泥岩等)地质特征的宏观定性描述阶段,缺少从微观定量的角度分析页岩油储层的岩性、物性、烃源岩特性等,影响了沧东凹陷孔二段页岩油勘探的精准部署。
笔者主要依据沧东凹陷G108-8,GD12和GD14这3口重点取心井的岩心资料及系统分析化验资料,从矿物组成的微观、量化角度分析孔二段页岩层系的岩性特征、储集特征、有机地化特征及其对烃类储集能力的影响,指出页岩层系形成并富集页岩油的内在原因,以期为页岩层系的理论研究与页岩油的勘探实践提供认识支撑。
图1 沧东凹陷孔二段沉积体系与现今构造(据文献[19]修改)Fig.1 Sedimentary system and present structure of Kong2 Member in Cangdong Sag(modified according to reference[19])
沧东凹陷为渤海湾盆地黄骅坳陷南区的一个次级构造单元,面积约为1 760 km2(图1),早期为碟状坳陷型湖盆,具有构造活动弱、频次多、幅度小的构造背景,后期在区域性拉张背景下逐渐演化为断陷湖盆,形成了南皮斜坡、孔东斜坡、孔西斜坡、孔店构造带及舍女寺断鼻等5个构造单元[21-23]。孔二段沉积时期沧东凹陷为亚热带潮湿气候下的淡水—半咸水封闭湖盆,总体上古气候经历了由半干旱到温暖湿润再到干旱炎热的演化过程,形成了以湖相深灰色、灰黑色富有机质泥页岩、灰褐色页岩等页岩层系为主的沉积建造。受盆外孔店凸起、沧县隆起、东光凸起、徐黑凸起4大物源区、10个子物源的综合影响,环湖发育3个沉积、储层、生烃特征均不同的沉积环带,其中内环C和中环B是细粒沉积岩发育的主要场所。
沧东凹陷孔二段(Ek2,包括Ek21—Ek24共4个亚段)为一个完整的三级层序,可划分为4个四级层序(SQEk21—SQEk24)和 10个五级层序(Ek24SQ①—Ek21SQ⑩)[18](图2)。纵向上,不同层序发育阶段的烃源岩特征存在明显差异,其中优质烃源岩在稳定湖泛期尤其是最大湖泛面附近分布相对集中,Ek23SQ④(湖扩体系域早中期)及Ek21SQ⑨中下部(高位体系域早期)最为发育,总有机碳含量(TOC)平均可达5.64%,其次是Ek23SQ⑤(湖扩体系域中晚期),TOC值平均为4.21%;Ek24SQ②(低位体系域)发育一套相对劣质烃源岩,TOC值平均仅为0.82%,Ek21SQ⑩(高位体系域)同样为相对劣质烃源岩,未取心;Ek22SQ⑧发育一套全区稳定存在的重力流沉积,Ek24SQ①以三角洲前缘致密砂岩沉积为主。平面上,钻井揭示页岩层系最大厚度区主要分布在风化店南部至肖官屯一带,平均厚度大于400 m,面积达140 km2,厚度大于300 m的面积达270 km2以上。
图2 G108-8井孔二段测井、录井、分析化验资料及层序格架Fig.2 Logging,mud logging,analysis and test data,and sequence framework of Kong2 member of Well G108-8
本次研究的基础资料包括G108-8井(Ek2,取心长495.7 m)、GD12井(Ek22,取心长71.6 m)及GD14井(Ek21,取心长68.5 m)3口井取心资料和配套的测井、录井资料以及XRD、地化热解、物性分析等8 000余块次分析化验资料。本次取样采取高密度、变密度分析联测取样的设计方法,综合考虑取样点位置、测试项目的组合联测和样品点垂向密度分配等,遵循密集取样、系统取样、控制取样、特殊取样、一致测试的原则,其中优质烃源岩或优质储层采用密集、系统取样的方法,而较差烃源岩或储层则控制取样数量,同时同一个深度点采取岩性基本一致的样品进行多项目“非订单式”联测,即根据研究需要同一样品点设计多项测试项目,为后续地质参数相关性的分析奠定了良好的资料基础。
图3 沧东凹陷孔二段细粒沉积岩矿物组分及组构Fig.3 Mineral composition and structure of fine-grained sedimentary rocks of Kong2 Member in Cangdong Sag
扫描电镜、偏光显微镜、阴极发光镜下观察发现(图3),研究区孔二段页岩层系微观上矿物组分多样、结构复杂,多种矿物呈现组分混杂及组构叠置2种混合沉积方式。组分混杂表现为同一层系内碳酸盐、石英、长石等多种矿物组分呈无规律混合;组构叠置表现为相对均一碳酸盐、长英质、黏土矿物或有机质等纹层在纵向上相互叠置。通过XRD资料发现,细粒沉积岩中矿物组分包括方解石和白云石等碳酸盐矿物、石英和长石等长英质矿物、黏土矿物以及方沸石和黄铁矿等。长英质矿物含量较高,多为18%~42%,平均为34%;碳酸盐矿物含量主要为12%~62%,平均为34%;黏土矿物含量多小于30%,平均仅为16%;局部方沸石相对发育,多为2%~19%,平均为14%;黄铁矿及菱铁矿含量平均仅为1%;长英质矿物、碳酸盐矿物、黏土及其他矿物基本各占1/3,没有绝对优势矿物,黏土矿物含量较低是沧东凹陷细粒沉积岩的典型特征(表1)。综合对比陆相盆地和海相盆地细粒沉积岩的矿物组分可以发现(表1),无论是国内还是国外,海相盆地长英质矿物占比较高,碳酸盐矿物偏低,而陆相盆地混杂程度更高,基本没有相对优势的矿物[12,24-28]。
表1 陆相湖盆与海相盆地细粒沉积岩矿物组分对比Table1 Comparison of mineral composition of fine-grained sedimentary rocks between continental lacustrine basin and marine facies basin
首次发现“隐形纹层”,即岩心目测观察呈薄层状或块状,但实际纹层发育的是一种隐形构造,表现为放置岩心库的岩心经一段时期风化作用后,顺隐形纹层形成书页状,同时通过统计岩心纹层发现,平均每0.1 m发育30条纹层,最高可达196条,证实孔二段以纹层状或隐形纹层状页岩层系为主,真正块状泥岩相对较少。过去对孔二段页岩层系岩石类型的划分多采用基于岩心及薄片观察的泥岩、页岩、云质泥岩等命名方式,无法从矿物组分上探究这套生烃层系的本质,制约了页岩油气的深入研究。矿物组分是细粒沉积岩形成的物质基础,沉积构造是矿物组分的空间分布和排列方式,岩石的烃源岩特性、物性、含油性、脆性等方面的性质均受矿物组分、含量及其空间分布和排列方式的影响,因此以矿物组分及沉积构造为依据来划分岩石类型有利于细粒沉积岩的精细研究。在大量XRD数据的基础上,采用三端元、四组分细粒沉积岩岩石分类方案[30],将这套传统烃源岩划分为长英质页岩、灰云岩、黏土质页岩及混合质页岩4大类,研究区基本不发育黏土质页岩(图4),结合岩心观察沉积构造特征,进一步细分为纹层状长英质页岩、块状灰云岩、纹层状混合质页岩等7小类(图5)。由于物源供应强度、沉积古地貌、母岩性质等因素的差异影响,不同斜坡区岩石类型分布特征存在差别,孔西斜坡G108-8井长英质页岩占39%,混合质页岩占38%,灰云岩占23%;孔东斜坡GD14及GD12井陆源碎屑供应相对较强,长英质矿物含量较高,平均超过50%以上,长英质页岩占56%,其次是灰云岩,占29%,混合质页岩仅占15%。
图4 沧东凹陷孔二段细粒沉积岩三端元岩石定名三角图Fig.4 Triangular chart of 3-end-mumber mineral of finegrained sedimentary rocks of Kong2 Member in Cangdong Sag
图5 沧东凹陷孔二段细粒沉积岩主要岩石类型及其特征Fig.5 Rock types and their characteristics of fine-grained sedimentary rocks of Kong2 Member in Cangdong Sag
2.2.1 长英质页岩
通过同一样品点岩心观察、薄片鉴定及X射线衍射(XRD)分析发现,从矿物组分及沉积构造上,长英质页岩可细分为纹层状长英质页岩(S1)、块状长英质页岩(S2)及团块状(条带状)长英质页岩(S3)(图5)。其中纹层状长英质页岩(S1)在岩心上表现为灰色、灰白色长英质纹层与褐色、灰褐色碳酸盐纹层及深灰色黏土纹层频繁叠置,薄片下表现为不同矿物组分富集层纵向上以渐变或突变形式无规律叠置,多为长英质纹层夹白云石、黏土、方沸石、有机质等纹层或与之互层,纹层均平直而细密,易发育层理缝;块状长英质页岩(S2)岩心上表现为深灰色、灰色块状特征,无明显纹层结构,薄片下可见泥级至粉砂级的石英、长石颗粒、黏土及泥晶白云石空间上呈无序混杂,纹层不发育。团块状(条带状)长英质页岩(S3)岩心上可观察到呈团块状或薄夹层式分布的砂屑及砂质条带,以灰色、灰白色粉砂岩甚至细砂岩为主,同时可见丰富的沉积构造,如扰动构造、滑塌变形等,多属于滑塌或洪水等事件性浊流的产物[31],薄片下可观察到粒径相对较粗的长英质集中团块包裹在泥级细粒沉积物中。
2.2.2 灰云岩
灰云岩主要包括纹层状灰云岩(C1)及块状灰云岩(C2)(图5)。纹层状灰云岩(C1)岩心及薄片上均表现为褐色、灰褐色白云石纹层与深灰色、灰黑色黏土纹层或长英质纹层频繁叠置,白云石纹层多厚于黏土纹层及长英质纹层,纹层间界线清晰,层间偶见磨圆较差的风成粉砂质颗粒星散分布[11,32]。块状灰云岩(C2)岩心上多呈褐色或灰褐色,单层厚度一般小于30 cm,多呈薄层状、条带状或透镜状,典型特征是高角度异常压力缝非常发育,裂缝开度多为0.5~2 mm,呈半充填或未充填,XRD分析白云石含量一般在60%以上,镜下以微晶白云石或泥晶白云石为主,偶见零星长英质矿物分散其中,无明显纹层结构。
2.2.3 混合质页岩
混合质页岩主要包括纹层状混合质页岩(M1)和块状混合质页岩(M2)(图5)。纹层状混合质页岩(M1)在岩心上表现为不同颜色及厚度的纹层频繁叠置,不同成分纹层纵向平直规则叠置、颜色易于区分,厚度多为0.1~2 mm,少量大于2 mm,薄片观察呈现泥质-钙质-长英质等多种成分纹层的频繁无序叠置,单一纹层厚度仅为0.02~0.2 mm,属于典型的季节性变化形成的纹层[33]。块状混合质页岩(M2)岩心上主要呈灰色、深灰色纹层不明显的厚层均一块状,薄片观察可见长英质颗粒、泥晶或微晶碳酸盐矿物、黏土矿物等相对均匀、无规则混杂,偶见草莓状黄铁矿、生物介壳碎片等。
由此可见,细粒沉积岩并非高黏土含量、低陆源碎屑组分的简单均质的泥页岩类,而是由多种矿物成分在不同沉积条件下形成的类型多样的沉积复合体。
图6 沧东凹陷孔二段三大岩类储集空间及类型Fig.6 Pore space and types of three major rocks of Kong2 Member in Cangdong Sag
表2 沧东凹陷孔二段三大岩类主要储集空间及特征Table2 Pore space and characteristics of three major rocks of Kong2 Member in Cangdong Sag
图7 沧东凹陷G108-8井孔二段三大岩类物性特征Fig.7 Petrophysical characteristics of three major rocks of Kong2 Member of Well G108-8 in Cangdong Sag
通过岩心、薄片(普通薄片、铸体薄片、荧光薄片)、扫描电镜、激光共聚焦电镜等手段的综合观察分析(图6,表2)可知,细粒沉积岩主要储集空间为基质孔隙和(微)裂缝,其中基质孔隙孔径为0.03~2 μm,主要包括粒间孔、晶间孔、溶蚀孔等无机孔隙以及有机质孔、有机质与颗粒构架孔等有机孔隙;(微)裂缝开度多为30~3 000 μm,主要包括层理缝、构造(微)缝、异常压力缝等。通过对物性、含油饱和度和脆性的统计分析(图7)发现,孔隙度多为0.3%~11%,渗透率一般为0.02~10 mD,含油饱和度一般为3%~70%,广义脆性指数(碳酸盐、石英及方沸石矿物所占比例)多为40~70。其中长英质页岩主要以粒间孔、有机质孔、层理缝、构造(微)缝等储集空间为主;有效孔隙度为0.24%~6.03%,平均为3.1%;渗透率为0.03~10 mD,平均为0.25 mD;含油饱和度一般为15%~70%,平均为52%;广义脆性指数一般为35~65,平均为55.7。灰云岩主要以晶间孔、溶蚀孔、异常压力缝、构造(微)缝为主;有效孔隙度为0.33%~13.22%,平均为5.8%;渗透率为0.02~16.2 mD,平均为0.28 mD;含油饱和度一般为3%~40%,平均为27%;广义脆性指数一般为50~85,平均为80.1。混合质页岩主要以晶间孔、有机质孔、层理缝及构造(微)缝为主;有效孔隙度多为0.28%~4.45%,平均为3.3%;渗透率为0.02~3.3 mD,平均为0.30 mD;含油饱和度一般为12%~60%,平均为46%;广义脆性指数一般为45~75,平均为62.9。由此可见不同矿物组成、不同岩性的细粒沉积岩,具有不同的储集空间类型、孔径分布、孔渗特征、含油饱和度及工程改造特性。
前人研究及有机地化数据分析均证实,沧东凹陷孔二段细粒沉积具有优质烃源岩多、非烃源岩少的典型特征[34]。其中长英质页岩有机质丰度最高,TOC值主要为1.27%~8.76%,最高可达12.92%,平均为5.41%,生烃潜量(S1+S2)一般为5.42~57.2 mg/g,平均为30.8 mg/g;其次为混合质页岩,TOC值主要为 0.82%~7.41%,平均为 3.49%,S1+S2值主要为2.42~45.1 mg/g,平均为19.98 mg/g;灰云岩有机质丰度相对较差,但多数样品亦达到好烃源岩的标准,TOC值主要为0.34%~4.62%,平均为2.04%,S1+S2值主要为1.23~32.5 mg/g,平均为10.12 mg/g。通过最高热解峰温(Tmax)和氢指数(HI)法对干酪根类型判定,发现孔二段总体以Ⅰ型及Ⅱ1型干酪根为主,含少量Ⅱ2型及Ⅲ型,不同岩类干酪根类型存在一定差异,长英质页岩和混合质页岩主要以Ⅰ型干酪根为主,含少量Ⅱ1及Ⅱ2型,而灰云岩Ⅰ型、Ⅱ1型、Ⅱ2型及Ⅲ型均占一定比例,同时发现TOC与长英质含量之间存在正相关性,证实盆外输入性有机质是干酪根的重要来源(图8)。通过岩性与热演化成熟度相关性分析发现,三大岩类热演化程度没有明显差异,仅与深度存在一定关系,基本都分布在0.6%~1.3%,平均为0.9%,热演化程度适中,处于大量生油阶段[35],但区域上南皮斜坡低部位热演化程度略高于孔西斜坡。
图8 沧东凹陷G108-8井孔二段长英质含量与TOC关系Fig.8 Relationship between felsic content and TOC of Kong2 Member of Well G108-8 in Cangdong Sag
4.2.1 有机质丰度与储层孔隙发育程度的关系
三大岩类主要担当传统烃源岩的是长英质页岩及混合质页岩,这2种岩类仍存在一定的基质孔隙,主要为有机质孔,因此随着TOC的增大,孔隙度呈现缓慢增大的现象(图9),反映随着有机质含量增多,有机质孔相应增加。据JARVIE研究证实,有机质含量为7%的泥页岩,生烃演化消耗35%的有机碳,有机质孔可增加4.9%[36],这种具有较大表面积的有机质孔是吸附态滞留烃具有经济开采价值的物质基础之一。对于同样具有较好生烃能力但主要充当细粒沉积区储层的灰云岩,由于有机质含量相对偏低且研究层段热演化成熟度略低等因素的综合影响,有机质孔发育程度偏低,TOC与孔隙度呈负相关关系。由此证实,页岩层系中,长英质页岩及混合质页岩中主要为原地滞留烃,灰云岩中主要是短距离运移烃。
图9 沧东凹陷G108-8井孔二段TOC与孔隙度的关系Fig.9 Relationship between TOC and porosity of Kong2 Member of Well G108-8 in Cangdong Sag
4.2.2 有机质丰度与储层含油量的关系
研究已证实,烃源岩热演化产生的烃类首先要满足自身及周边矿物的吸附,吸附饱和后,开始充注各类储集空间(成为滞留烃),当储集空间充满后,才能开始向外排烃、运移。卢双舫等对松辽盆地、渤海湾盆地等地区的研究发现[26,37-40],S1随TOC的变化呈现出明显的“三段性”(表3)。沧东凹陷孔二段S1随TOC的变化也表现出“三段性”(图10):TOC值小于0.7%时,S1值多小于0.5 mg/g,烃类强吸附、欠饱和,储集空间几乎无效,为稳定低值段,基本属于难开发的无效资源;当TOC值为0.7%~2.2%时,S1随着TOC增大明显上升,烃类已经满足自身及矿物的吸附,开始充注储集空间,为明显上升段,可作为中低效的后备资源;当TOC值大于2.2%时,随TOC的增大,S1基本稳定在3 mg/g,为稳定高值段,代表生成的烃类已经完全充满储集空间,多余烃类开始向外运移,是当前勘探开发的高效资源。由此可见,在同等地质条件下,有机质含量在一定范围内控制储层含油量,但不是呈绝对的正相关性,当有机质含量超过一定值后(如沧东凹陷G108-8井TOC值为2.2%),含油量基本稳定在一定范围内,这种情况下,储层自身的储集能力是决定含油量的关键[42]。
表3 不同盆地页岩油含量“三段性”界限值Table3 Boundary value of three stages of shale oil content in different basins
图10 沧东凹陷G108-8井孔二段S1随TOC的变化Fig.10 Change of S1with TOC of Kong2 Member of Well G108-8 in Cangdong Sag
4.2.3 有机质成熟度及丰度与白云石结晶程度的关系
通过对灰云岩普通薄片、TOC和Ro平行取样点资料的综合分析发现,白云石结晶程度与有机质含量、热演化成熟度之间存在一定的关联性。孔二段白云石主要呈现泥晶、微晶和细晶3种晶体形态,其中泥晶白云石粒径多小于5 μm,自形程度差;微晶白云石粒径多为5~25 μm,多数晶粒自形程度高,少数呈半自形;细晶白云石粒径主要为30~120 μm,多为自形颗粒。在热演化成熟度相近的条件下,有机质含量越高,白云石结晶程度越好、晶体粒径越大,如G108-8井位于孔西斜坡,取心段深度为2 915~3 415 m,Ro值为0.6%~0.83%,TOC越高,白云石结晶程度越好(图11);在有机质含量相近的条件下,热演化成熟度越高,白云石结晶程度越好、晶体粒径越大,如GD14井位于南皮斜坡,取心段深度为4 080~4 150 m,Ro值为0.95%~1.03%,对比G108-8井相近TOC的样品,其白云石结晶程度均较好,70 m取心段中基本见不到质纯泥晶白云石,均有一定程度的重结晶现象,整体结晶程度明显高于热演化成熟度偏低的G108-8井。
生烃演化引起的碳酸盐岩重结晶作用主要起两方面作用:一是形成大量白云石晶间孔,为烃类的聚集提供了储集空间;二是泥晶碳酸盐溶蚀并重结晶过程中排出黏土、流体包裹体等杂质,形成更加纯净的白云石晶体,提高了岩石的脆性,利于后期压裂改造。
图11 沧东凹陷孔二段不同结晶程度白云石的TOC和Ro值Fig.11 Relationship between TOC of crystallization degree of dolomite and Roof Kong2 Member in Cangdong Sag
目前,沧东凹陷已有70余口井钻遇孔二段页岩层系,且多有油气显示,前期受“页岩层系为生油岩、无储层、无可动烃”传统认识的局限,没有引起足够的重视。近年来,新理论、新技术、新资料促进了页岩层系地质特征的新认识、新发现,老井复查、直井及水平井钻探共15口,13口获得工业油流,2口水平井正试油。2012年KN9井在Ek21SQ⑨页岩层系获得5.42 t/d自然产能,但后期迅速降到0.07 t/d,基本失去生产能力;在新的地质认识的指导下,2017年,针对Ek21SQ⑨以纹层状长英质页岩、纹层状灰云岩为主的3 402~3 424 m深度段实施压裂改造,压裂液为2 136.5 m3,加砂量为106.8 m3,2 mm油嘴放喷求产,套压为11.5~13 MPa,日产油量达29.6 m3/d。2016年针对官东重点目标区部署的G1608井,在Ek2
1SQ⑨以纹层状长英质页岩夹薄层块状灰云岩为主的4 050~4 065 m深度段实施压裂改造,3 mm油嘴获得53.1 t/d的高产,试采105 d,累积产油量达1 540.7 t。为进一步实现页岩油的效益勘探开发,2017年,在官东重点目标区,针对Ek21SQ⑨纹层状长英质页岩、纹层状混合质页岩及块状灰云岩相对发育的层段,实施了2口水平井GD1701H及GD1702H,其中GD1701H水平段长1 474 m,气测异常活跃,解释油层1 412.4 m,设计压裂段长为941.3 m,共16段/54簇点,总液量为34 288 m3,总砂量为1 388 m3;GD1702H水平段长为1 342.7 m,解释油层1 284.6 m,设计压裂段长为1 283.4 m,共21段/66簇,总液量为 41 099 m3,总砂量为 1 343 m3,目前GD1701H和GD1702H这2口水平井均处于压裂液返排阶段,返排率分别为28.4%和22.8%,日产油量最高分别已达75.9和61 m3/d。
沧东凹陷孔二段页岩层系矿物组分多样但没有优势矿物,多组分的复杂混合、纵向叠置导致其岩石类型多、非均质性强,颠覆了传统的泥页岩简单均质的观点。基于XRD矿物组分的细粒沉积岩岩性分析,奠定了细粒岩相区岩性特征、有机地化特征、储层特征的再认识和新发现,所划分的长英质页岩、灰云岩及混合质页岩三大岩类可以有效的将不同有机质含量、不同发育程度及类型的储集空间、不同物性特征及工程改造特性的页岩油储层划分开,为下一步地质“甜点”体及工程“甜点”体的综合优选奠定良好基础。地质特征的综合分析表明,有机质含量、热演化成熟度等影响孔隙发育程度、含油量及碳酸盐结晶程度,但三大岩类均可成为优质页岩油储层,其中有机质孔、层理缝相对发育的长英质页岩和混合质页岩以原地滞留烃为主,而孔隙度、脆性指数较高的灰云岩主要为短距离运移烃,针对不同岩类寻找相应的“甜点”、采取适宜的工程改造措施,是提高页岩油勘探开发效益的关键。目前的勘探成效已证实,沧东凹陷孔二段页岩层系具备页岩油勘探的良好潜力,同时也可为其他陆相湖盆页岩油的勘探提供良好的借鉴。