借人工智能技术识别早期胃癌

2019-01-05 10:01
医药前沿 2019年2期
关键词:准确率胃癌病例

日本研究人员借助人工智能技术开发出一种胃癌识别方法,能以较高的准确率发现早期胃癌。

日本理化学研究所日前发布公报介绍,分辨早期胃癌与胃炎并不容易,专科医生也未必能通过内窥镜图像作出准确判断。为此,该机构研究人员和日本国立癌症研究中心的研究人员决定利用人工智能深度学习技术来识别早期胃癌图像。

计算机深度学习通常需要数十万至数百万张图像用作学习数据。由于大量收集早期胃癌的高质量图像较为困难,研究人员选取了早期胃癌图像和正常图像各大约100张,并对其进行随机截取和数据扩展处理,生成了大约36万张图像。

计算机深度学习大量图像数据后,研究人员用约1万张未用于学习的图像进行测试,检验计算机能否准确诊断早期胃癌。结果发现,在判断为胃癌的病例中,准确率为93.4%;在判断为正常的病例中,准确率也达到83.6%。此外,计算机在深度学习后除能判断是否患癌外,还能指出癌变部位。

研究人员说,这项研究成果将有助于早期胃癌的发现与治疗,他们接下来将研究如何进一步提高计算机识别的准确率。

猜你喜欢
准确率胃癌病例
不同序列磁共振成像诊断脊柱损伤的临床准确率比较探讨
“病例”和“病历”
高速公路车牌识别标识站准确率验证法
一例犬中毒急诊病例的诊治
P53及Ki67在胃癌中的表达及其临床意义
胃癌组织中LKB1和VEGF-C的表达及其意义
胃癌组织中VEGF和ILK的表达及意义
妊娠期甲亢合并胎儿甲状腺肿大一例报告
Meckel憩室并存异位胰腺和胃黏膜并出血一例
中医辨证结合化疗治疗中晚期胃癌50例