李俊颖 李新举 吴克宁† 宋 文 张小丹
(1 中国地质大学(北京)土地科学技术学院,北京 100083)
(2 国土资源部土地整治重点实验室,北京 100035)
(3 山东农业大学资源与环境学院,山东泰安 271018)
煤炭是我国非常重要的能源,占全国一次能源总量的74%左右,对国民经济的发展有至关重要的作用。随着经济的高速增长,矿产资源开发强度不断加大,使得矿区土地资源破坏十分严重,矿区生态环境日趋恶化。济宁市是国家重要的能源基地,行政辖区内煤炭资源丰富,含煤面积40万hm2[1],多年来采煤塌陷造成了大面积耕地损毁,全市采煤塌陷地已达4.2万hm2,占总含煤面积的11.5%,而且这一数据随着煤矿开采面积的进一步加大,每年以近0.25万hm2的速度递增,估计2020 年前后采煤塌陷区面积将会超过6万hm2,最终将达到12万hm2左右,占耕地面积的25%[2]。煤炭开采破坏了大量的土地和植被,其中对土地特别是耕地的破坏最为严重。耕地的大量破坏带来了一系列矿区生态环境问题,制约了矿区经济社会的可持续发展。据统计,济宁市每年因采煤塌陷造成的粮食和经济作物损失高达 3.6 亿元,而且这一数字正在逐年增加[3]。
现阶段,我国矿区开展土地复垦工作通常是使用挖掘机等大型机械,复垦的材料也集中在矿区的固体废弃物、矿区原土,或者采用客土置换等方式来实现土地复垦。土壤复垦采用的工艺不同,对矿区的土地复垦也有着不同的影响,由于设备、复垦材料以及复垦工艺等方面的因素,会对矿区土壤复垦的成败或者复垦后土壤理化性质的优劣以及改良技术造成直接的影响。土壤化学性质对于土壤肥力的高低有着重要影响,复垦区土壤肥力状况直接受到土壤化学性质的影响,土壤肥力的高低也会影响植物的生长,从而影响作物的产量与质量等[4]。氮、磷、钾作为植物生长的必需元素,对植物的生长发育及个体功能运行具有重要的作用[5-6],且土壤养分具有时空变化特征[7],因此,复垦土壤养分含量是耕地复垦效果评价的重要指标[8],也是指导土壤复垦工作的重要依据。引黄河泥沙充填复垦是近年来治理复垦塌陷地的新方法,传统的复垦方法例如挖深垫浅、粉煤灰充填和煤矸石充填存在着效率低、原料短缺,潜在二次污染的弊端[9-12]。因此,使用黄河泥沙对塌陷区进行复垦不仅可以缓解黄河泥沙对河道的淤积[13-14],为东部平原矿区的充填复垦提供足量的充填材料,并且不受二次污染可能性的限制[15]。目前,对引黄充填复垦的研究多集中在对引黄河泥沙的技术、成本以及可行性的分析上,胡振琪等[16]在济宁市北部试验场,对引黄充填复垦技术工艺流程、复垦后的土壤剖面情况及地貌景观等进行了研究;邵芳等[17]研究优选出表土、心土和黄河泥沙组配为1∶1∶2的覆土材料作为黄河泥沙充填复垦采煤沉陷地的覆土材料;王培俊等[18]模拟试验了黄河泥沙充填复垦中土工布排水拦沙效果。但是,鲜有对引黄充填复垦后土壤养分变化的研究。
济宁市引黄充填复垦土壤缺乏全面、系统的研究,针对复垦土壤肥力状况以及改良技术等问题,本文研究了不同复垦年限下引黄充填复垦对土壤养分的影响状况,预测了0~20 cm耕层土壤养分的恢复时间,并通过研究筛选出复垦土壤中恢复较差的养分指标,提出相应的改良措施。
本研究试验地位于山东省济宁市北部梁山县靠近黄河的大路口乡彭那里村西北,地理坐标为34°56′N、116°01′E,是济宁为实施大规模的黄河泥沙充填塌陷地工程而特别设置的一个试验区,利用靠近黄河的优势,以黄河泥沙为填充材料,表土剥离后用管道运输至塌陷地块进行充填,并在泥沙上部覆盖表土[19]。复垦后利用方式为耕地。该区域属于半湿润大陆性气候,年平均气温13.5℃,无霜期205 d,年降水601 mm。对照农田为实验地块附近具有相同耕作条件的优质农田,种植结构为冬小麦/夏玉米轮作。
在研究区,分别选取不同复垦年限(1、3、5 a)的复垦地作为研究样地。取样时间为2016年6月,采取对角线5点取样法,取样范围为1 m2,分成0~20 cm、20~40 cm、40~60 cm三个土层深度采集土壤样品,将同一深度5个取样点的土壤样品混匀。试验以不同复垦年限为处理,以具有相同耕作方式的农田为对照(CK)。
土壤样品测定:采用重铬酸钾外加热法测定土壤有机质;采用碱解扩散法测定土壤碱解氮;采用Oslen法测定土壤有效磷;采用pH 7.0醋酸铵浸提-火焰光度计法测定土壤速效钾[20]。
采用Microsoft Office Excel 2016进行数据处理与分析;通过SPSS16.0软件,利用最小显著差异(LSD)方法进行显著性检验。
土壤有机质是土壤固相重要的组成部分,尽管有机质含量仅占土壤总量很小一部分,但是土壤有机质对于土壤形成发育、土壤肥力保持、生态环境维护等方面有着至关重要的作用[21]。由图1A可知,复垦1 a,0~20 cm、20~40 cm、40~60 cm土层土壤有机质含量分别为5.29、6.02、5.72 g·kg-1,低于对照地块,差值分别为8.53、7.59、7.22 g·kg-1;至复垦3 a时,0~20 cm土层有机质含量增加至8.15 g·kg-1,低于对照地块5.67 g·kg-1;至复垦5 a时,0~20 cm土层有机质含量已达1.03 g·kg-1,20~40 cm、40~60 cm土层土壤有机质含量也分别达到13.28、12.11 g·kg-1。与对照地块相比,虽然复垦5 a后复垦地块土壤有机质仍低于对照地块,但随着复垦时间的推移,有机质在土层中逐渐积累,含量总体呈上升趋势。
从不同复垦年限、不同耕层深度复垦土壤碱解氮含量(图1B)看,碱解氮含量变化范围为57.29~70.04 mg·kg-1,稳步增高。复垦1 a,0~20 cm、 20~40 cm、40~60 cm土层碱解氮含量分别为57.29、59.67、60.14 mg·kg-1,低于对照地块;复垦3 a时,复垦土壤碱解氮含量仍低于对照地块,在0~20 cm、 20~40 cm、40~60 cm土层与对照地块碱解氮含量的差值分别为15.91、21.06、20.53 mg·kg-1;复垦5 a土壤碱解氮含量分别为69.11、70.04、68.49 mg·kg-1,呈增加趋势,但增量不明显,碱解氮含量仍低于对照地块。复垦初期,复垦填充的黄河泥沙中碱解氮的含量较低,因而土壤碱解氮含量较低,但随着复垦年限的延长,土壤碱解氮含量逐渐增加,复垦5 a后土壤碱解氮的含量在0~20 cm、20~40 cm、40~60 cm土层均高于复垦1 a后土壤碱解氮的含量。
土壤磷是植物生长发育所必需的元素之一,土壤中磷含量对土壤肥力以及土壤含水量、酸碱度、有机质等物理化学特征均有影响。矿区复垦1、3、5 a土壤有效磷含量均大幅低于对照地块(图1C),复垦1a时0~20 cm、20~40 cm、40~60 cm土层土壤有效磷含量与对照地块的差值分别为11.81、10.54、11.48 mg·kg-1;复垦3a时各土层土壤有效磷含量与对照地块的差值分别为10.42、9.62、11.14 mg·kg-1;复垦5a时各土层土壤有效磷含量与对照地块的差值为9.86、9.78、10.83 mg·kg-1。复垦土壤有效磷含量虽总体呈上升趋势,但含量小于7 mg·kg-1,复垦5 a之后磷含量仅有对照地块的60%,供磷能力明显较弱。
由图1D可知,不同复垦年限0~60 cm土层土壤速效钾含量范围为70~137.5 mg·kg-1,最大值137.5 mg·kg-1为复垦5 a 40~60 cm的土层,最小值70.94 mg·kg-1为复垦1 a 0~20 cm土层。复垦1 a 0~20 cm、20~40 cm、40~60 cm土层土壤速效钾含量分别为70.94、88.49、79.35 mg·kg-1,低于对照地块,与对照地块速效钾含量的差值分别为73.61、57.82、65.38 mg·kg-1。随着复垦年限的延长,土壤速效钾含量随之增长,复垦3 a 0~20 cm、20~40 cm、40~60 cm土层土壤速效钾含量分别为110.3、122.4、118.5 mg·kg-1。复垦5 a 0~20 cm、40~60 cm土层土壤速效钾含量仍低于对照地块,但20~40 cm土层土壤速效钾含量基本趋近于对照地块速效钾含量。
图1 不同复垦年限不同土层土壤养分含量变化Fig. 1 Variation of soil nutrient contents with reclamation history relative to soil layer
结合该复垦模式关键因子和观测数据,以梁山县引黄充填复垦耕地为例,对该复垦模式下研究样点进行分析。通过分析复垦样地的观测数据,构建不同土壤养分指标与年限间的回归方程,进而预测引黄充填复垦模式土壤养分的恢复时间。
引黄充填复垦0~20 cm土层土壤有机质含量随复垦年份的增加呈升高趋势(图2A)。变化趋势符合线性回归方程y=1.884x+4.405,决定系数R2=0.962。因此,要达到对照耕地土壤有机质含量14.85 g·kg-1,需要5.54 a。
引黄充填复垦0~20 cm土层土壤碱解氮含量随复垦年份的增加整体呈升高趋势(图2B),但复垦1~2 a碱解氮含量有所降低,差异不显著,之后逐年升高。变化趋势符合多项式回归方程 y=0.25x2+1.08x+74.42,决定系数 R2=0.959。因此,要达到对照耕地土壤碱解氮含量88.62 mg·kg-1,需要5.63 a。
引黄充填复垦不同土层土壤有效磷含量随复垦年份的增加呈升高趋势,但整体变化幅度较小(图2C)。引黄充填复垦0~20 cm土层土壤有效磷含量变化趋势符合多项式回归方程y=-0.0874x2+1.174x+12.61,决定系数R² =0.999。因此,要达到对照耕地土壤有效磷含量22.96 mg·kg-1,需要15.01 a。
引黄充填复垦不同土层土壤速效钾含量随复垦年份的增加呈升高趋势,但升高幅度逐年变缓(图2D)。0~20 cm土壤速效钾变化趋势符合多项式回归方程 y=-5.138x2+46.08x+40.91,决定系数R2=0.980。复垦年限4.48 a时,土壤速效钾含量达到最大值(144.2 mg·kg-1),与对照水平相当,已经恢复至对照水平。
图2 引黄充填复垦不同年份0~20 cm土壤养分变化趋势Fig. 2 0~20 cm soil nutrient variation trend of the reclaimed farmland with cultivation of the land going on
传统的充填复垦材料粉煤灰、煤矸石中通常含有镉(Cd)、铅(Pb)和汞(Hg)等有害重金属元素,复垦后的土地具有潜在的生态危害性:重金属元素易被农作物吸收而影响作物的正常生长发育,同时会在作物体内发生转移,从而影响复垦土地的粮食安全性;此外,如果这些重金属元素随径流扩散,还将会污染更大范围的土壤[22-23]。预复垦及挖深垫浅等复垦方式由于机械施工过程中对土壤造成的压实较为严重,影响土壤的通透性和作物对养分的吸收,还需通过深翻耕、农业种植和培肥等进一步改善土壤质量,复垦成本整体较高[24]。黄河每年会产生4亿t的泥沙,积存在河流下游。王培俊等[25]分析表明,黄河泥沙中的重金属元素含量未超过《土壤环境质量标准》(GB15618—1995)[26]二级和三级标准值。黄河泥沙的pH呈弱碱性,能满足大多数作物的生长要求,将黄河泥沙用作采煤沉陷地的充填复垦材料是可行的,同时也可减轻黄河下游的泥沙淤积,节省治沙成本,一举两得。但未关注复垦后土壤养分的恢复变化情况,特别是对于复垦为耕地的区域,本文的研究对该区域的农业生产具有一定的指导意义。
黄河泥沙质地属于砂土,其保水保肥性较差。李新举等[27]研究表明,在引黄充填复垦过程中,部分土壤养分随水分流失严重,致使复垦后土壤中的养分含量明显偏少,特别是有效磷含量。土壤有效磷是衡量土壤磷素养分供应水平高低的指标,在农业生产中一般采用土壤有效磷这一指标来指导施用磷肥[28],了解土壤中有效磷的供应状况,对于合理施肥有重要意义。本文的研究显示,引黄充填复垦地土壤有效磷含量普遍较低,与相关研究一致,同时发现其恢复所需时间也较长,需要通过改变农田灌溉模式、合理种植、遵循少量多次的原则多施用磷肥等措施进行改善。引黄充填复垦地土壤有机质、碱解氮、速效钾含量随着复垦时间的延长,基本可达到对照地块的含量,并非复垦地农业生产的限制因子,但在复垦过程中也应注重土壤养分的积累,可通过增施有机肥料、种植绿肥、秸秆还田、调节土壤水热状况等措施来积累和调控土壤养分含量,以减少复垦土壤的养分流失,提高土壤肥力,保证作物正常生长。
引黄充填复垦采煤沉陷地是一项复杂、系统的工作,本文仅研究了引黄充填复垦土壤养分随时间的变化趋势,是引黄充填复垦土壤评价的基础性工作,而如何更加科学、合理地重构引黄充填复垦土壤剖面以及黄河泥沙运输成本等关键技术问题将在后续进一步研究。
随着引黄充填复垦年限的增加,土壤有机质、碱解氮、速效钾和有效磷的含量均呈增加趋势,但有效磷的增长较为缓慢。复垦5 a后,有效磷含量仅占对照地块土壤有效磷含量的60%。通过构建土壤养分指标与年限间的回归方程,预测在复垦5~6 a后,复垦土壤的有机质、碱解氮和速效钾含量可恢复至对照耕地水平;有效磷含量的恢复时间较长,需15 a。因此,在复垦过程中,应当从减少复垦土壤养分流失、改善农艺措施和后期合理增施磷肥或有机肥料的角度入手,提升土壤质量。