林霞 赵侯宇
【摘 要】主要討论了一类函数方程解的情况,利用对合自同构在群上的性质,证明了该方程的解是一个加法函数。
【关键词】函数方程;对合自同构;加法函数
中图分类号:O171 文献标识码: A 文章编号: 2095-2457(2018)23-0209-002
DOI:10.19694/j.cnki.issn2095-2457.2018.23.093
【Abstract】We study the solutions of functional equation.By the properties of involutive automorphism on group,we prove the solutions can be expressed in additive function.
【Key words】Functional equation;Involutive automorphism;Additive function
最近,对带有对合的函数方程的研究成为函数方程领域一个热点,目前关于此方面的研究已取得了一系列成果[1-7]。1994 年,Simon 和Volkmann[8]考虑了
注由上述定理易知函数方程(2)的解f在群G上满足f(xn)=nf(x). 因此引理1的结论(iv)是n=2的情况。
【参考文献】
[1]Belaid B, Elhoucien E. An extension of Van VleckS functional equation for the sine[J]. Acta Math. Hung.,2016, 150:258-267.
[2]Chahbi A, Fadli B, Kabbaj S. A generalization of the symmetrized multiplicative Cauchy equation[J]. Acta Math. Hung., 2016, 149:170-176.
[3]Ebanks B, Stetk.r H. D'Alembert's other functional equation on monoids with an involution[J]. Aequat. Math.,2015, 89:187-206.
[4]Elfen H H, Riedel T, Sahoo PK. A Variant of a Generalized Quadratic Functional Equation on Groups[J]. Results in Mathematics, 2017, 72:1-17.
[5]Stetk.r H. Functional Equations on Groups[M]. World Scientific Publishing Co, Singapore, 2013).
[6]Stetk.r H. Functional equations on abelian groups with involution[J]. Aequ. math., 1997, 54:144-172.
[7]Stetk.r H. Kannappan's functional equation on semigroups with involution[J]. Semigroup Forum, 2017, 94:17-30.
[8]Simon A., Volkmann P. Caractérisation du module dune fonction additive àlaide dune équation fonctionnelle[J].Aequationes Math., 1994, 47:60-68.
[9]Badora R, Przebieracz B, Volkmann P. On Tabor groupoids and stability of some functional equations[J]. Aequationes Math., 2014, 87:165-171.
[10]Jarczyk W, Volkmann P. On functional equations in connection with the absolute value of additive functions[C].Series Math. Catovic. Debrecen., 2010, 32:11p.
[11]Imke T. On the functional equation on groups[J]. Arch. Math., 2017, 109:215-221.
[12]Volkann P. Charakterisierung des Betrages reellwertiger additiver Funktionen auf Gruppen. KITopen, 4pp, 2017.