胡银丰 金将溢
摘 要: 三维成像声纳在成像过程中需要对上万个波束进行实时波束形成,这将导致成像算法因运算量庞大,无法满足实时成像的需求。针对这一问题,本文提出一种分级子阵波束形成算法以减少成像算法运算量与存储量,从而提升效率。通过对平面阵进行子阵划分,分别从主瓣宽度、旁瓣峰值、存储量与计算量四个参数进行分析,在满足成像效果前提下,寻找一种合理的阵型划分方法,经仿真测试,在阵型进行子阵划分的条件下可以满足对水下目标实时三维成像,符合工程实践的需求。
关键词: 三维成像; 声纳; 波束形成; 阵型划分
中图分类号:TB565+.2 文献标志码:A 文章编号:1006-8228(2018)09-04-04
Abstract: The beamforming of three dimensional real time imaging sonar requires thousands of beams in the imaging process, which will leads to the large amount of computation and can't meet the need of real-time imaging.To solve this problem,this paper introduce a method of sub-array beamforming to reduce the computation and memory, improving the effciency of computation. By dividing the planar array into different subarrays, the main beam width,sidelobe peaks, calculation amount and storage capacities are analyzed respectively to look for an optimal method of array partitioning without affecting the imaging performance,which will also meets the need of real time imaging process. The optimized algorithm can satisfy the needs of imaging three dimensional targets in real time by simulation, besides the algorithm also meets the imaging requirements in engineering.
Key words: three-dimensional imaging; sonar; beam forming; array dividing
0 引言
隨着水下成像技术快速发展,三维实时成像声纳逐渐成为对水下目标进行探测、识别的主要设备。根据不同成像原理,可将成像声纳分为两类:①基于声透镜技术进行成像;②基于阵列波束形成技术进行成像。其中第二类成像技术日渐成为市场主流,主要代表产品有Eclipse多波束声纳,FarSounder声纳以及EchoScope声纳[1]。
相控阵三维声学成像声纳采用基于阵列波束形成技术进行成像,通过发射单频窄带声脉冲信号对整个水下成像场景进行目标探测,平面换能器阵列对回波信号进行有效接收,信号处理机运用实时波束形成算法计算不同方位的回波信号。回波信号强度反映了该方位上声波反射能力强弱,从而可以获取对水下目标的三维图像。由于在成像过程中需要同时生成一万多个波束,采用传统频域波束形成算法所需运算量庞大,无法满足成像需求,需要对成像算法进一步优化,以期降低运算量,本文通过将平面阵进行子阵划分的方法,将平面阵划分成两级子阵,在第一级子阵中进行频域波束形成,在第二级子阵中对第一级子阵生成的波束进行抽取,按照全阵不同波束方向进行波束域转换,获得目标的实时图像,经仿真验证,采用分级子阵波束形成算法可有效减少运算量,满足实时成像的需求。
1 分级子阵波束形成算法
根据水下目标与平面阵的距离,可将成像区域分为近场区域与远场区域[2],判别远近场分布如式⑴所示:
其中,R表示目标与平面阵的距离,L表示平面阵的边长或孔径,λ表示回波信号的波长。假设接收平面阵阵元为N×N=48×48, 阵元间距d=λ=0.5cm,工作频率f0=300KHz,根据⑴式,可判别近场条件为[3]:
由于成像声纳实际作用距离可达上百米,因此,须考虑在远场条件下成像场景。
1.1 一级子阵波束形成
为减少成像算法运算量,本文对三维成像声纳平面阵进行均匀子阵划分,通过将N×N个阵元组成的平面阵划分成多个二级子阵,每个二级子阵包含多个一级子阵。子阵划分示意图如图1所示。
远场条件下,一级子阵采用频域波束形成,二级子阵通过抽取每个一级子阵生成的波束,按照全阵不同方向进行波束域转换。
假设θap与θeq分别表示入射信号方位角与俯仰角。根据乘积定理可知[4],一级子阵波束形成可分成X轴与Y轴方向,表达式如式⑶所示:
一级子阵完成波束形成后,从阵元域数据转换为波束域数据,参与二级子阵波束抽取。
1.2 二级子阵波束抽取
二级子阵作为平面阵虚拟阵元形式,在P×Q个方向进行波束形成,全阵共包含Nb×Nb个二级子阵,当需要预成某一方向的波束信号,首先从所有一级子阵的波束中抽取与预成波束方向最近的一个波束。因此,二级子阵的每个波束方向都需要从所有一级子阵抽取Nb×Nb个波束,波束分为水平抽取与垂直抽取。
1.2.1 水平抽取
每个一级子阵水平方向预成Na个波束平面,二级子阵波束抽取与该方向距离最近的一个波束平面,波束抽取示意图如图2所示。
其中,细线表示一级子阵在水平方向生成的波束平面,粗线表示二级子阵需要生成的波束平面,以左侧第一个波束平面作为参考平面,Pb表示二级子阵水平方向波束标号,β表示二级子阵预成波束平面与参考平面之间夹角,x表示目标平面水平标号,α表示目标平面与参考平面之间夹角。当β等于α时,可求得目标平面水平标号x的值:
1.2.2 垂直抽取
垂直抽取与水平抽取过程类似,目标平面垂直标号y表示如下:
经过波束抽取后,来自于一级子阵的Qa×Qa个波束作为二级子阵的基本单元,参与二级子阵波束形成。
2 阵型划分
波束主瓣宽度与旁瓣峰值是影响声纳成像算法最主要的两个因素。在确保主瓣宽度与旁瓣峰值条件下,对平面阵进行子阵划分可有效减少算法所需的运算量与存储量,满足成像实时性需求。分级子阵波束形成算法的精度主要取决于一级子阵的阵元数与波束数。当一级子阵阵元数减少,波束数增加时,成像分辨率不断提高,并且逐渐接近于传统频域波束形成算法。当一级子阵阵元数Na=1,波束数与传统频域波束形成预成波束保持一致时,采用分级子阵波束形成获得的波束图与传统频域波束形成波束图相同。对接收平面阵进行不同子阵划分时,必须考虑两个因素:
⑴ 全阵的阵元数N必须为一个合数;
⑵ 一级子阵阵元数Na必须为全阵阵元数N的公约数。
当全阵阵元确定后,便可根据公约数分布,进行子阵划分,经仿真测试,可以得到平面阵在不同子阵条件下的波束图。
假设全阵阵元数为N×N=48×48,所需预成波束为Q×Q=128×128,根据子阵划分方案,将平面阵分为以下几种,如表1所示:
根据以上不同阵型划分方案,仿真结果水平方位角视图如图3-图7,其中纵轴均为归一化后的波束强度值。
上述几种不同子阵划分结果主瓣与旁瓣参数的数据对比如表2所示。
主瓣宽度越窄,成像的角度分辨率就越高,旁瓣峰值越低,成像目标的识别精度就越高[5]。仿真结果表明,不同子阵条件下波束主瓣宽度均可以保持在1?左右,与传统频域波束形成主瓣宽度基本一致。经验证,随着一级子阵阵元数增加,阵列的角度分辨率保持不变,旁瓣峰值略有增加,但不影響目标的成像精度。
3 算法效率分析
3.1 存储量分析
传统频域波束形成所需存储量为8×(N×Q),分级子阵波束形成由于全阵水平方向与垂直方向上所有行与列的相移参数完全相同,仅需存储一行与一列阵元的相移参数,一级子阵阵元数与波束方向数分别为Na×Na和Qa×Qa,二级子阵阵元数与波束方向数为Nb×Nb和Qb×Qb,采用分级子阵波束形成所需存储量用Num表示如下:
经计算,分级子阵波束形成所需存储量约为传统频域波束形成所需存储量的20%,采用分级子阵波束形成可显著减少相移参数的存储量。
3.2 计算量分析
传统频域波束形成所需计算量为(4L-2)×N2+(8×N2-2)×Q2,分级子阵波束形成计算量由三部分构成[6],离散傅里叶变换(DFT),一级子阵波束形成,二级子阵波束形成。计算量用O表示,离散傅里叶变换所需计算量为:
经计算,采用分级子阵波束形成算法所需计算量为传统频域波束形成算法的10%,计算量大幅度降低。算法效率对比数据如表3所示。
由表3可知,当一级子阵阵元个数为N1=6,N2=8并且在Q1×Q1=24×24个方向形成波束时,虽然旁瓣峰值有所增加,但与传统频域波束形成相比,算法所需存储量与计算量得到大幅度减少,在不影响成像精度条件下,可以牺牲较少的旁瓣峰值为代价,满足成像实时性需求。在各阵型划分方案中,可以作为一种最合理的子阵划分方案。
4 结论
针对三维成像声纳在成像过程中由于运算量大而无法满足实时成像的难点,本文提出一种分级子阵波束形成算法。即将平面接收阵均匀划分成两级不同阵元的子阵,对子阵进行频域波束形成,通过与传统频域波束形成比较,结合波束主瓣宽度、旁瓣峰值、计算量与存储量四个参数进行综合分析,经仿真验证表明,在远场条件下采用分级子阵波束形成算法,在获得与传统频域波束形成算法相似主瓣宽度条件下,可有效减少原成像算法所需的计算量与存储量,有效提升运算效率,不影响成像角度分辨率与目标识别精度,满足实时成像需求。这可为该型声纳成像算法快速化研究提供有利参考。
参考文献(References):
[1] 王朋,张扬帆,黄勇等.基于稀布阵的实时三维成像声纳系统[J].仪器仪表学报,2016.37(4):843-851
[2] 田坦.声纳技术(第二版)[M].哈尔滨工程大学出版社,2010.
[3] 陈文渊,沈斌坚,陈晏余.平面阵波束形成算法效率比较[J].声学与电子工程,2008.89(1).
[4] Urick R J. Principles of underwarter sound[M]. NYMcGraw Hill Press,1983.
[5] 林贤州,陈耀武.基于分级波束形成的三维声纳系统设计[J].传感器与为系统,2014.33(8):101-108
[6] 韩业强.实时相控阵三维成像声纳波束形成及阵列稀疏技术研究[D].浙江大学博士学位论文,2013.