李浩川,曲彦志,杨继伟,崔丽洋,毛熙岚,刘宗华
基于核磁共振的玉米不同籽粒类型单粒质量和含油率分析
李浩川,曲彦志,杨继伟,崔丽洋,毛熙岚,刘宗华※
(河南农业大学农学院/河南省粮食作物协同创新中心/小麦玉米作物学国家重点实验室,郑州 450002)
针对现有玉米单倍体核磁共振分选系统基于一个含油率阈值,无法对胚败育籽粒和单倍体籽粒正确分选的问题,分别对玉米生物诱导产生的二倍体、单倍体和胚败育3种不同籽粒类型的单粒质量和含油率进行分析,提出了利用籽粒含油率双阈值提高单倍体正确识别率的分选方法。该研究以2个普通玉米杂交种和3个自交系为母本,以高油型诱导系为父本,进行生物诱导产生的3种不同类型籽粒为研究对象,利用核磁共振分选系统分别对不同类型籽粒的单粒质量和含油率进行测定,结果表明:单粒质量整体表现为单倍体>二倍体>胚败育,除二倍体籽粒与胚败育籽粒间存在极显著差异外,其他籽粒类型间差异不显著;不同类型籽粒的单粒质量平均变异系数为16.62%,并且每个材料的3种籽粒类型间出现较大的重叠区域。而不同类型籽粒含油率整体表现为二倍体>单倍体>胚败育,变异性以二倍体最小,平均变异系数仅为12.52%,其次是单倍体,而胚败育籽粒最高(34.14%),但其含油率最低且均≤2%;每个材料各自的3种类型籽粒间含油率呈现梯度分布,存在较明显的界限。由此可见,利用籽粒含油率能够区分玉米生物诱导的3种不同籽粒类型,而单粒质量则不能;通过设置二倍体籽粒的最小含油率为上限,胚败育籽粒的最大含油率为下限,利用含油率的双阈值可提高单倍体的正确识别率,为玉米生物诱导单倍体高效自动化分选提供依据。
核磁共振;作物;玉米;单倍体;单粒质量;油分含量
自交系选育是培育玉米新品种的核心环节,常规选系的方法需要至少7代连续自交才能达到99%以上的纯合率,选育周期长,效率低,难以满足玉米商业化育种的需求。而单倍体育种技术只需2代就可获得100%的纯系,显著缩短了育种周期,提高了育种效率,已成为现代玉米育种的三大核心技术之一[1]。单倍体的产生、加倍及双单倍体(doubled haploid,DH)的应用是单倍体育种技术的3个关键环节,而单倍体的产生是单倍体育种技术利用的前提。产生单倍体的途径较多,可以通过花药离体培养、未授粉子房、花粉辐射等方法,但这些方法不仅受基因型的依赖性较强而且操作也比较繁琐,因此生物诱导的方法备受青睐。生物诱导单倍体包括孤雄生殖和孤雌生殖2种方式,最早在不定配子体突变体W23()中发现,以该材料做母本可诱导产生1%~2%的孤雄生殖单倍体[2],由于纯合体表现出雄性不育,必须在杂合状态下才能保持,而杂合体自交只能产生1/4的纯合体,导致其繁殖困难,因此无法进行规模化应用。目前,生产上利用单倍体产生的主要途径是生物诱导孤雌生殖,其基本过程是以期望获得单倍体的材料为母本,以诱导系为父本进行杂交,在杂交当代的果穗上就会产生一定比例的单倍体。单倍体籽粒快速准确的挑选是单倍体育种技术的先决条件,也是单倍体工程化育种的重要环节。因此,如何从大批量杂交果穗中将单倍体高效地挑选出来已是生物诱导孤雌生殖单倍体利用面临的重要问题。单倍体鉴定常用方法主要是利用遗传标记基因能在籽粒顶部及胚部产生的Navajo紫色标记性状进行人工鉴定,也有利用形态学、细胞学、分子标记、射线照射、质量鉴定等方法进行田间或室内鉴定[3-4],但是这些方法成本较高,且效率低。为了提高单倍体挑选的效率,初步实现了单倍体的自动化分选。目前,玉米生物诱导孤雌生殖单倍体的自动化分选主要是基于光谱信息[5-6]、成像识别[7]及籽粒成分[1]等方法对籽粒进行鉴定分选。宋鹏等[7]利用计算机视觉系统基于胚部是否有表达的色素标记进行单倍体分选,对于胚面朝上的籽粒正确识别率可达90%,分选成功率可达80%,但对于胚面朝下的籽粒,成像后就无法进行识别,为了解决这个问题,李卫军等[8]基于计算机视觉加上斜面翻滚部件,利用高速照相机,实现籽粒多次信息获取,单倍体正确识别率可达95%;除此之外,刘金等[9]利用可见光漫透射光谱以及Brett等[10]利用颜色标记与荧光显微光谱学结合的方法对单倍体与二倍体进行识别,单倍体的正确分选率均在80%以上。尽管这些方法得到了一定改进,但仍受基因表达的限制,尤其是存在抑制基因的硬粒玉米材料中,Navajo标记的表达受到抑制,因此很难利用上述方法实现分选。基于此,中国农业大学率先开展了基于籽粒含油率的单倍体自动化分选研究,成功选育出第一个高油型诱导系农大高油高诱1号的基础上并首次提出利用高油诱导系花粉的直感效应进行单倍体鉴定[11-13],这一方法的可行性也进一步得到证实[14],通过籽粒含油率利用核磁共振实现了单倍体的自动化分选[15],这种简单可靠的识别方法大大提高了单倍体的分选效率[16],并已在育种中应用。确定含油率阈值是利用油分含量进行单倍体鉴定的一个关键环节,将直接影响到单倍体分选的正确识别率。研究结果表明含油率阈值应由单倍体漏选率、误选率和值3种因素共同决定[17]。李浩光等[18]也提出了基于最小平方误差的方法进行单倍体分选,只需对少量的单倍体和二倍体籽粒含油率进行测定,然后通过构建鉴别单倍体模型就能迅速确定含油率阈值,二倍体正确拒识率及单倍体正确识别率的均值达到90%以上。这些基于油分利用核磁共振进行单倍体分选的研究仅设置一个含油率阈值进行单倍体分选。然而,利用诱导系进行杂交诱导时,在诱导果穗上均会产生胚乳败育和胚败育的籽粒[19],且父本诱导系的诱导能力与籽粒败育程度存在高度相关[20],因此,在严格授粉条件下,诱导当代的果穗上有正常杂交的二倍体籽粒、单倍体籽粒、胚败育籽粒和胚乳败育籽粒4种类型。胚乳败育籽粒由于生长发育过程中停滞,胚乳中积累的有机物较少,表现出小而轻的籽粒,通过筛子即可筛出;而胚败育籽粒,由于胚发育不正常,胚乳能正常发育,从而引起籽粒油分含量极低,在机械分选过程中胚败育籽粒常常与单倍体籽粒混在一起,导致单倍体的误选率较高,需要进行人工二次分选,增加了分选成本。因此,进行单倍体与胚败育籽粒和二倍体的识别是单倍体自动化分选的一个重要内容。本研究以高油型诱导系为父本,普通玉米为母本,通过分析生物诱导孤雌生殖过程中二倍体籽粒、单倍体籽粒和胚败育籽粒3种不同类型籽粒的单粒质量和含油率,以期为单倍体准确识别提供理论依据,提高核磁共振分选单倍体的准确率,进而促进单倍体育种技术的工程化进程。
试验于2016年冬在海南河南农业大学试验基地以高油诱导系CHOI2(含油率为9.21%)和 CHOI2/CAUHOI (含油率为8.02%)为父本,以普通玉米杂交种LN16841(C521×L56M,含油率为3.24%)和LN16842(L217×LHC1,含油率为3.09%)以及自交系E28(含油率为3.92%)、郑22(含油率为3.46%)和铁C8605-2(含油率为3.88%)为母本,进行人工授粉(如表1)。成熟后收获诱导果穗10穗以上,分别按材料混合脱粒。依据标记性状进行二倍体、单倍体和胚败育3种不同类型籽粒的挑选,籽粒顶部和胚均有紫色的籽粒为二倍体籽粒;籽粒顶部有紫色标记,胚部无色的籽粒为单倍体籽粒[21];胚乳正常,籽粒顶部糊粉层有紫色标记,胚部凹陷没有规则形状胚的籽粒为胚败育籽粒(图1)。利用上海纽迈科技有限公司的核磁共振分选系统(型号:OnlineMR20-015V)对3种不同类型的籽粒分别进行单粒质量和含油率测定。利用 SPSS19.0进行统计分析。
表1 杂交组合来源
图1 生物诱导产生的3种不同籽粒类型
不同遗传背景材料诱导后各自不同类型籽粒的单粒质量和含油率的均值见表2。不同类型籽粒的平均质量相差不大,对于正常受精的二倍体来说,单交种LN16841的单粒质量为0.25 g,单交种LN16842和自交系铁C8605-2的二倍体单粒平均质量均为0.26 g,最大的为E28,其单粒质量为0.30 g;不同材料单倍体籽粒的单粒质量以铁C8605-2最小,仅为0.23g,E28最大,高达0.29 g;而胚败育籽粒的单粒质量的变异范围为0.22~0.27 g。二倍体籽粒、单倍体籽粒和胚败育籽粒3种类型的单粒质量均值分别为0.26、0.27和0.24 g,整体表现为单倍体>二倍体>胚败育;测验结果表明(表3),只有二倍体与胚败育两者之间单粒质量达极显著水平,而二倍体与单倍体间、单倍体与胚败育籽粒间差异均不显著。但杂交种LN16841、LN16842及自交系郑22的单倍体籽粒平均单粒质量比二倍体籽粒高0.01~0.02 g。这可能是因为单倍体籽粒由于胚体积较小,相应胚乳库容变大,有利于更多淀粉的积累[22-23];而二倍体籽粒的胚,由于受高油父本的花粉直感效应影响,诱导当代籽粒胚较大,油分含量增多,胚乳体积变小,淀粉积累较少[24],从而导致单倍体籽粒质量略高于二倍体。
表2 不同材料不同籽粒类型单粒质量与油分平均值
3种不同类型籽粒油分含量中以二倍体籽粒油分含量最高,平均含油率高达5.93%,其次是单倍体,含油率为3.37%,而胚败育籽粒含油率仅为0.89%;经过测验(表3),三者之间均存在极显著差异。不同材料间二倍体籽粒油分含量的变异较大,以自交系铁C8605-2的二倍体籽粒油分含量最高,含油率为6.52%,杂交种LN16841最低,其二倍体含油率仅为5.19%;单倍体籽粒油分含量变异较小,以E28油分最高(3.79%),LN16842最低(3.04%)。全部籽粒中均以胚败育籽粒的油分含量最低,变异幅度也最小,LN16842的胚败育籽粒含油率最高,仅为1.04%。由此可见,普通玉米与高油诱导系杂交后由于花粉直感效应可以提高杂交当代籽粒含油量,不同类型籽粒油分含量差异均在2个百分点以上,因此,设置合理的含油率参数比设置单粒质量参数实现单倍体的自动化分选更可靠。
表3 不同籽粒类型间单粒质量与含油率均值t测验
注:**代表在0.01水平上差异显著。
Note: ** represents significant difference at 0.01 level.
不同材料经过高油诱导系诱导产生的二倍体籽粒、单倍体籽粒和胚败育籽粒3种类型单粒质量和含油率变异系数如表4。结果表明:不同遗传背景材料的变异性较大,来自LN16841不同类型籽粒的单粒质量平均差异最大,为19.76%,其次是郑22和LN16842,为19.60%左右,而E28的变异最小,仅为11.29%;不同类型籽粒间的单粒质量平均变异系数以胚败育籽粒为最高,达17.85%,其次是单倍体籽粒,而二倍体籽粒的单粒质量变异系数最小,仅为15.82%。对含油率而言,不同材料间籽粒含油率的平均变异均在20%左右;不同籽粒类型间变异性较大,胚败育籽粒的含油率平均变异系数高达34.14%,单倍体籽粒的平均变异系数为16.02%,而二倍体籽粒的最小,仅为12.52%;由此可推断胚的败育过程各籽粒并非同步,可能在胚发育过程中的任何时期均可发生败育,败育早的籽粒,含油率较低,败育晚的籽粒含油率较高;整体而言,尽管单粒质量的平均变异系数(16.62%)小于含油率的平均变异系数(20.90%),且每两类籽粒间的平均变异系数差值也小于对应材料含油率平均变异系数的差值,但对于每个不同遗传背景材料的不同类型籽粒变异范围而言,各个材料在单粒质量上均存在较大的重叠区域(图2),而含油率在每个材料的3类不同籽粒间存在较明显的界限(图3),由此可知,利用籽粒油分含量作为判断二倍体籽粒、单倍体籽粒和胚败育籽粒是可行的。
表4 不同籽粒类型的单粒质量和含油率变异性分析
图2 不同材料间3种类型籽粒单粒质量变异范围
图3 不同材料间3种类型籽粒含油率变异范围
不同基因型材料所产生的二倍体籽粒、单倍体籽粒和胚败育籽粒含油率呈明显的梯度分布(图4)。正常杂交的二倍体籽粒位于最上部,单倍体籽粒位于中间,而败育籽粒位于最下方,很容易划分出3个不同的类别。而单粒质量呈现连续分布,且3类籽粒间没有明显的特征分布。由此可见,籽粒含油率是进行杂交二倍体籽粒、单倍体籽粒和胚败育籽粒区分的更好指标,而单粒质量只有二倍体与胚败育籽粒间存在显著差异,但是由于其在任两类籽粒间的分布出现严重交叉,不能对生物诱导的3种不同籽粒类型进行准确分选。因此,基于籽粒含油率可利用核磁共振将生物诱导的3种不同类型籽粒进行识别和区分,不受基因表达和籽粒胚面朝向的影响。由于3类籽粒间含油率呈明显的梯度分布且有较清晰的界限,可设二倍体籽粒含油率的最小值为上限,胚败育籽粒含油率的最大值为下限进行单倍体识别,只要在这2个阈值之间就可判定为单倍体;由于一些母本材料的单倍体籽粒和二倍体籽粒之间以及单倍体籽粒和胚败育籽粒之间也存在一定的重叠区域,可取重叠区域的均值作为上限阈值和下限阈值,以适当减小单倍体的漏选率和误选率。根据本研究结果,通过设置合适的上限与下限双阈值,利用核磁共振就可以有效地从3类不同籽粒中分选单倍体,降低单倍体的误选率,减少人工二次分选单倍体中混入胚败育籽粒的工作量。
图4 不同籽粒类型含油率和单粒质量的分布
本研究基于核磁共振分选系统,利用玉米高油型诱导系和不同遗传背景的普通玉米材料进行杂交所产生的正常受精二倍体籽粒、单倍体籽粒和胚败育籽粒3种籽粒类型进行单粒质量和含油率的分析,主要结论如下:
1)玉米不同遗传背景材料经过高油诱导系诱导后所产生的3种不同籽粒类型,单粒质量只在二倍体与胚败育2种籽粒类型间存在极显著差异,二倍体与单倍体之间以及单倍体与胚败育籽粒间的单粒质量差异均不显著;而含油率在任2种不同类型籽粒间均存在显著差异。
2)单粒质量呈现连续分布,3类籽粒间没有明显的界限且存在较大的重叠区域;而油分的分布呈现阶梯状,正常杂交的二倍体位于最上部,单倍体籽粒位于中间,败育籽粒位于最下方,不同籽粒类型间存在较明显的界限,很容易将3种不同类型籽粒进行识别。
3)籽粒含油率是区分二倍体籽粒、单倍体籽粒和胚败育籽粒的更好指标。以二倍体籽粒含油率的最小值为上限,以胚败育籽粒含油率的最大值为下限,利用含油率的双阈值可提高单倍体的正确识别率,可准确地分选出胚败育籽粒,极大地减少人工二次分选的工作量,为基于核磁共振系统进行单倍体自动化分选提供理论支撑。
[1] 陈绍江,黎亮,李浩川. 玉米单倍体育种技术[M]. 第二版. 北京:中国农业大学出版社,2012.
[2] Kermicle J L. Androgenesis conditioned by a mutation in maize[J]. Science, 1969, 166(3911): 1422-1424.
[3] 张瑞平,周联东,王文洁. 玉米单倍体鉴定方法研究进展[J]. 现代农业科技,2017(20):24-25.
Zhang Ruiping, Zhou Liandong, Wang Wenjie. Research progress on identifying method of maize haploid[J]. Modern Agricultural Sciences and Technology, 2017(20): 24-25. (in Chinese with English abstract)
[4] Andrew S, Michael B, Thomas L, et al. Weighing in on a method to discriminate maize haploid from hybrid seed[J]. Plant Breeding, 2015, 134(3): 283-285.
[5] 刘文杰,李卫军,李浩光,等. 基于KPCA和近红外光谱的鉴别玉米单倍体方法研究[J]. 光谱学与光谱分析,2017,37(7):2024-2027.
Liu Wenjie, Li Weijun, Li Haoguang, et al. Research on the method of identifying maize haploid based on KPCA and near infrared spectrum[J]. Spectroscopy and Spectral Analysis, 2017, 37(7): 2024-2027. (in Chinese with English abstract)
[6] 覃鸿,马竞一,陈绍江,等. 基于近红外漫反射与漫透射光谱的玉米单倍体鉴别比较研究[J]. 光谱学与光谱分析,2016,36(1):292-297.
Qin Hong, Ma Jingyi, Chen Shaojiang, et al. Identification of haploid maize kernel using NIR spectroscopy in reflectance and transmittance modes: A Comparative study[J]. Spectroscopy and Spectral Analysis, 2016, 36(1): 292-297. (in Chinese with English abstract)
[7] 宋鹏,吴科斌,张俊厚,等. 基于计算机视觉的玉米单倍体自动分选系统[J]. 农业机械学报,2010,41(增刊):249-252.
Song Peng, Wu Kebin, Zhang Junhou, et al. Sorting system of maize haploid kernels based on computer vision[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(Supp): 249-252. (in Chinese with English abstract)
[8] 李卫军,刘玉梅,陈绍江,等. 基于机器视觉的玉米单倍体自动分选系统[J]. 农机化研究,2016,1(1):81-84.
Li Weijun, Liu Yumei, Chen Shaojiang, et al. Automatic separating system of maize haploid based on machine vision[J]. Journal of Agricultural Mechanization Research, 2016, 1(1): 81-84. (in Chinese with English abstract)
[9] 刘金,郭婷婷,李浩川,等. 基于可见光光谱高效鉴别玉米单倍体籽粒[J]. 光谱学与光谱分析,2015,35(11):3268-3274.
Liu Jin, Guo Tingting, Li Haochuan, et al. Discrimination of maize haploid seeds from hybrid seeds using vis spectroscopy and support vector machine method[J]. Spectroscopy and Spectral Analysis, 2015, 35(11): 3268-3274. (in Chinese with English abstract)
[10] Brett B, Freppon D, G De La Fuente, et al. Haploid differentiation in maize kernels based on fluorescence imaging[J]. Plant Breeding, 2016, 135(4): 439-445.
[11] 刘志增,宋同明. 玉米高频率孤雌生殖单倍体诱导系的选育与鉴定[J]. 作物学报,2000,26(5): 570-574.
Liu Zhizheng, Song Tongming. The breeding and identification of haploid inducer with high frequency parthenogenesis in maize[J]. Acta Agronomica Sinica, 2000, 26(5): 570-574. (in Chinese with English abstract)
[12] Li Liang, Xu Xiaowei, Jin Weiwei, et al. Morphological and molecular evidences for DNA introgression in haploid induction via a high oil inducer CAUHOI in maize [J]. Planta, 2009, 230(2): 367-376.
[13] 陈绍江,宋同明. 利用高油分的花粉直感效应鉴别玉米单倍体[J]. 作物学报,2003,29(4):587-590.
Chen Shaojiang, Song Tongming. Identification haploid with high oil xenia effect in maize[J]. Acta Agronomica Sinica, 2003, 29(4): 587-590. (in Chinese with English abstract)
[14] Melchinger A E, Schippr W, ack Friedrich Utz H, et al. In vivo haploid induction in maize: Identification of haploid seeds by their oil content [J]. Crop Science, 2014, 54(4): 1497-1504.
[15] Liu Jin, Guo Tingting, Yang Peiqing, et al. Development of automatic nuclear magnetic resonance screening system for haploid Kernel in maize[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the TCSAE), 2012, 28(2): 233-238.
刘金,郭婷婷,杨培强,等. 玉米单倍体核磁共振自动分拣系统的开发[J]. 农业工程学报,2012,28(2):233-238. (in English with Chinese abstract)
[16] Melchinger A E, Winter M, Mi X F, et al. Controlling misclassification rates in identification of haploid seeds from induction crosses in maize with high-oil inducers[J]. Crop Science, 2015, 55(3): 1076-1086.
[17] Melchinger A E, Schipprack W, Wurschum X, et al. Rapid and accurate identification of in vivo-induced haploid seeds based on oil content in maize[J]. Scientific Reports, 2013, 3(3): 2129-2133.
[18] 李浩光,李卫军,覃鸿,等. 基于最小平方误差的单倍体和二倍体分类方法研究[J]. 农业机械学报,2016,47(6):259-264.
Li Haoguang, Li Weijun, Qin Hong, et al. Research on haploid and diploid classifying method based on least square error[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(6): 259-264. (in Chinese with English abstract)
[19] Liu Chenxu, Li Xiang, Meng Dexuan, et al. A 4-bp insertion at ZmPLA1 Encoding a putative phospholipase a generates haploid induction in maize[J]. Molecular Plant, 2017, 10(3): 520-522.
[20] 董昕. 玉米单倍体诱导基因qhirl精细定位与新型诱导系选育研究[D]. 北京:中国农业大学,2014.
Dong Xin. Fine Mapping Haploid Induction Rate Geneand Marker Assisted Selection of
[21] 李浩川,杨继伟,曲彦志,等. 玉米不同基础群体孤雌生殖诱导系诱导能力评价[J]. 玉米科学,2015,23(1):73-77.
Li Haochuan, Yang Jiwei, Qu Yanzhi, et al. Evaluation for inducing parthenogenesis ability of different inducers from different basic populations in maize[J]. Journal of Maize Sciences, 2015, 23(1): 73-77. (in Chinese with English abstract)
[22] 秦营营,董树亭,魏珊珊,等. 去苞叶对夏玉米籽粒灌浆 特性和产量的影响[J]. 中国农业科学,2015,48(11):2118-2126.
Qin Yingying, Dong Shuting, Wei Shanshan, et al. Effects of dislodging subtending leaf on grain filling and yield of summer maize[J]. Scientia Agricultura Sinica, 2015, 48(11): 2118-2126. (in Chinese with English abstract)
[23] 董浩,张芳,夏光利,等.高油玉米花粉对普通玉米籽粒性状和含油量的影响[J]. 华北农学报,2014,29(增刊):188-192.
Dong Hao, Zhang Fang, Xia Guangli, et al. The influence of high-oil maize pollen to common maize kernel traits and oil content[J]. Acta Agriculturae Boreali Sinica, 2014, 29(Supp.): 188-192. (in Chinese with English abstract)
[24] 宋同明. 高油玉米[M]. 北京:北京农业大学出版社,1992.
Analysis on single kernel weight and oil content of different grain types in maize based on NMR
Li Haochuan, Qu Yanzhi, Yang Jiwei, Cui Liyang, Mao Xilan, Liu Zonghua※
(,//,450002,)
Maize haploid breeding as an important technology of modern breeding programs can shorten breeding cycles and enhance the breeding efficiency. The method of haploid produced by in vivo has become a routine process and has been adopted widely in maize breeding. The rapid and accurate recognition of haploid kernels is a prerequisite for in vivo haploid breeding technology. Therefore, how to efficiently select haploid seeds from mass hybridization kernels has been an issue during the use of parthenogenetic haploid. At present, spectral information and image recognition based on the geneexpressing Navajo marker in kernels were usually used to automatically sort haploids in maize, but the expression of genewere significantly depended on the maternal genetic backgrounds, it is unavailable for some flint germplasms with the presence of a supressor. With the development of inducers with high oil and high inducing rate, the automatic sorting of maize haploid kernels become a reality based on nuclear magnetic resonance (NMR). The embryo of haploid only developed from female gamete without the fusion of the sperm cell, so the oil content of haploid kernels is usually lower than that of diploid kernels because of xenia effect. Presently, most studies only set one threshold of oil content to identify haploid and diploid kernels based on NMR. However, there are some embryo abortion kernels with very lower oil content during the process of haploid induction, it is difficult to make distinction among diploid, haploid and embryo abortion kernels based on one threshold of oil content using NMRsorting system. In this paper, the single kernel weight and oil content of diploid, haploid and embryo abortion kernels by in vivo induction were analyzed, respectively, a new concept of increasing the correct discrimination rate of haploid based on two thresholds of oil content was developed. Three different types of kernels were produced by in vivo induction using two common maize hybrids and three inbred lines as females and inducers with high oil content as the males. The measurement of single kernel weight and oil content for three types of kernels were carried out by NMR sorting system. The result showed that the rank of the single kernel weight of different grain types was haploid > diploid > embryo abortion kernels, the highly significant difference existed between diploid and embryo abortion kernels, but there was no difference between diploid and haploid kernels, haploid and embryo abortion kernels.The variation coefficient of the average performance of single kernel weight was 16.62%, lager overlaps appeared among three different types of kernels. The oil content showed that the diploid > haploid > embryo abortion kernels. The coefficient of variation of oil content for diploid kernels was the lowest with only 12.52%, followed by haploid kernels, the highest was embryo abortion kernels with 34.14%, but the oil content was not more than 2% for all the embryo abortion kernels. The step distribution with obvious boundaries for oil content among the three different grain types was found. It indicated that the oil content can be used to recognize among three different types of kernels, but the single kernel weight cannot be as a sorting standard. According to the oil content, minimum of diploid and maximum of embryo abortion kernels were set respectively as the upper and lower limit value to form double thresholds, which could improvethe rate of correct discrimination for haploid and provide a reference during the process of automatically sorting haploid kernels with high efficiency.
nuclear magnetic resonance; crops; maize; haploid; single kernel weight; oil content
10.11975/j.issn.1002-6819.2018.20.023
S24
A
1002-6819(2018)-20-0183-06
2018-04-23
2018-08-01
国家重点研发计划项目(2016YFD0101205)资助
李浩川,博士,副教授,主要从事玉米遗传育种研究。Email:lihaochuan1220@163.com
刘宗华,博士,教授,主要从事玉米遗传育种研究。Email:zhliu100@163.com
李浩川,曲彦志,杨继伟,崔丽洋,毛熙岚,刘宗华. 基于核磁共振的玉米不同籽粒类型单粒质量和含油率分析[J]. 农业工程学报,2018,34(20):183-188. doi:10.11975/j.issn.1002-6819.2018.20.023 http://www.tcsae.org
Li Haochuan, Qu Yanzhi, Yang Jiwei, Cui Liyang, Mao Xilan, Liu Zonghua. Analysis on single kernel weight and oil content of different grain types in maize based on NMR[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(20): 183-188. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.20.023 http://www.tcsae.org