山核桃林闭合区内径流氮磷流失特征

2018-09-28 08:41陆荣杰吴家森姜培坤童志鹏
浙江农林大学学报 2018年5期
关键词:年际山核桃氮磷

王 莺,陆荣杰,吴家森,姜培坤,童志鹏

(1.浙江农林大学 环境与资源学院,浙江 杭州 311300;2.浙江省杭州市临安区林业局,浙江 杭州311300)

山核桃Carya cathayensis是中国特有的高档干果和木本油料植物,主要分布在浙西天目山脉一带,70%生长于土层浅薄、岩石裸露、生态脆弱的石灰岩山地[1-2]。长期以来,林农为增加产量,减少虫害,进行大量施肥,喷施灭蝇胺、啶虫脒等杀虫剂,同时为了方便采摘,使用克无踪等除草剂。山核桃林地的这种不合理经营管理导致严重的土壤侵蚀和水土流失。同时,山核桃林生长在坡地上,汇流、径流流速较快,不利于泥沙的沉积。农业非点源污染中的降雨径流是造成受纳水体水质恶化的主要原因之一,而不同形态存在的氮磷是农业径流中的重要污染物[3-4]。目前,国内外许多学者以农田为单位,在自然或人工模拟降雨条件下,通过径流小区试验来量化农田土壤侵蚀和养分流失。RAMOS等[5]在西班牙北部的一个葡萄园中通过模拟降雨试验监测不同降雨事件下的径流氮磷养分流失总量,所设径流小区面积为0.06 m2。鲁耀等[6]在云南省丘陵缓坡地上设置了18个面积为32 m2的径流小区来定位监测坡耕地红壤地表径流氮磷流失。大多数径流小区都是根据WISCHMEIER等[7]的小区标准或相近的坡长尺寸建造的,降低了小区规模的变异性。然而,径流小区不能完全反映整个研究区域的真实氮磷流失量。有学者[8]研究发现,在规模1~20 m2的径流小区中测定,会低估土壤流失量,而在20~500 m2的径流场中,土壤流失量又会被高估。STROOSNIJDER[9]的研究也表明,土壤流失率可在中小型径流小区中测定,但评估土壤泥沙量应该在更大规模的径流场中进行。可见,修筑径流小区对土壤扰动性大,因此利用径流小区来定位监测土壤径流、泥沙氮磷流失与实际情况存在一定的误差。有鉴于此,不少学者以流域为研究单位,比如DAI等[10]以中国抚仙湖流域为单位,探讨了土地利用类型和空间的变化对水质的影响,分析了河岸缓冲区保护建设对非点源污染和营养物质的输入和保护作用;GALOT[11]在延河流域研究黄土高原丘陵沟壑地区在降雨条件下造成的土壤和水的氮磷流失负荷特征。农田、河流均不是闭合式小区,影响小流域非点源污染的因子复杂多样,如径流、农村生活、人为耕作、养殖等,缺乏固定的污染源,变动大,河流总量不能估测。此外,以往的研究侧重于利用人工降雨试验或者利用典型降雨月份,如吴希媛等[12]和彭圆圆等[13]进行野外人工模拟降雨,分析坡面降雨径流中氮磷流失过程。张洋等[14]研究三峡库区农桑配置对地表氮磷流失的影响,所采集的样品为2014年3月22日、8月13日、9月20日3次径流。吴东等[15]在兰陵溪小流域采集2015年5-9月水样监测土地利用结构变化对氮素输出控制效应,而对自然降雨条件下土壤-径流-泥沙三者动态变化过程及其年际养分流失研究较为少见。本研究选择浙江省杭州市临安区山核桃林闭合区作为研究对象。这是一个天然集水区,在林间沟壑地带设置特殊的径流监测卡口站,研究1 a常规经营管理的山核桃林中自然降雨对径流的影响,观测径流氮磷年际动态变化过程,分析泥沙、土壤有效养分与径流氮磷流失的关系,解析山核桃经济林氮磷养分流失特征,为经济林氮磷流失负荷模拟及控制研究提供依据。

1 材料与方法

1.1 研究区概况

研究区位于浙江省杭州市临安区北部天目山山脚下的太阳镇武村(30°03′02″N, 119°08′54.2″E)。 该区属亚热带季风气候,年平均气温为16.4℃,年降水量为1 614.0 mm,年平均日照时数为1 774.0 h,无霜期为237.0 d。太阳镇是临安区山核桃主要产区,山核桃是当地农户的主要经济收入来源,盛产期山核桃面积400 hm2以上。试验山核桃林闭合区为封闭式天然集水区,养分流失只可在监测卡口站进行定位监测,占地面积为6.4 hm2,坡度为25°,树龄为32 a,土壤为砂质土,土壤类型为石灰性土壤,土层较薄,有机碳为2.31 g·kg-1,pH 5.04,采用常规管理,即每年只在5月上旬施复合肥[m(N)∶m(P2O5)∶m(K2O)=15∶15∶15]150 kg·hm-2, 7月下旬至 8月上旬喷施克无踪除草剂, 8月中旬进行人工除草。

1.2 试验设计

试验期间,采集2016年6月至2017年5月雨后闭合区径流及流失的泥沙量,并记录产流量。为了减少传统试验小区修整坡面对土壤的扰动,增加试验准确性,在山核桃林闭合区底部修建不同高度的2级水泥沉沙池,2级沉沙池之间用水泥墙阻隔,一级沉沙池通过水泥墙阻隔径流,形成径流泥沙的初步沉降。越过一级水泥墙的径流进入二级沉沙池,二级沉沙池通过水泥墙隔挡,进行储水,水泥墙底部设置排水管用于后期排水,并在二级水泥墙体不同高度出水口处设置不同量程的水表计量产生的径流量(图1)。

1.3 样品采集与分析

2016年6月至2017年5月为山核桃林土壤氮磷流失观测期。在此期间记录每次雨后径流产生量和日期,充分搅浑二级沉沙池中的径流,并采集3瓶径流样品。每场降雨过程采集的径流样品立即带回实验室进行氮磷质量浓度的测定。径流样品分为2份:一份水样不抽滤,用于测定总氮(TN,碱性过硫酸钾消解-紫外分光光度法)和总磷(TP,过硫酸钾-钼锑抗比色法);另一份用0.45 μm滤膜抽滤后的水样用于测定硝态氮(紫外分光光度法)、铵态氮(纳氏试剂分光光度法)、溶解性磷(DP,钼锑抗比色法)、水解氮(DN,总有机碳分析仪测定)。观测期间共采集29次径流样品,测定样品数据共为522个。

2016年6-12月为山核桃林土壤养分观测采样期。在此期间选择林地上坡、中坡、下坡各5个样点,采集0~10 cm土壤样品,将其混合,共采集土壤12次,每次采集的土壤对应同期的径流样品,测定其pH值(pH计测定)、碱解氮(锌-硫酸亚铁还原,LYT 1229-1999《森林土壤碱解氮的测定》)和有效磷(0.03 mol·L-1NH4F-0.025 mol·L-1HCl法)。

2017年3月和5月分别采集一级、二级沉沙池内的泥沙样品,称量,带回实验室风干处理,并测定泥沙颗粒全氮[m(K2SO4)∶m(CuSO4)∶m(Se)=100∶10∶1, 凯氏定氮法]、 全磷(氢氧化钠熔融-钼锑抗比色法)。

降雨量数据来源于临安区气象中心。

图1 径流监测卡口站布设示意图Figure 1 Diagram of layout of bayonet station in runoff monitoring

1.4 养分年际流失量和流失负荷的计算

山核桃林氮或磷的年际流失量(g·hm-2)=径流水中氮或磷的年际流失量(g·hm-2)+泥沙中氮或磷的年际流失量(g·hm-2); 山核桃林径流中氮或磷的年际流失负荷(tr)=[径流水中氮或磷的年际流失量(g·hm-2)×山核桃林地面积(hm2)]/106;山核桃林泥沙中氮或磷的年际流失负荷(ts)=[泥沙中氮或磷的年际流失量(g·hm-2)×山核桃林地面积(hm2)]/106。

1.5 数据处理

采用Excel 2007软件和DPS数据处理系统进行数据的统计和处理,采用Origin 8.5软件对试验数据进行作图分析。

2 结果与分析

2.1 山核桃林闭合区降雨量和径流量的动态变化

2016年6月至2017年5月整个水文年中,山核桃林闭合区降雨量和径流量的动态变化见图2。整个观测期间,降雨主要集中在2016年6-9月和2017年3-5月;径流量的年际变化趋势与降雨量相似,7月20日至8月9日,9月12-30日。径流量随着降雨量的增加而增加,3月下旬降雨量连续下降,径流量也随之下降。9月30日降雨量达到最大值233.1 mm,此时径流量也达到了峰值2 000.0 m3,2017年5月13日的降雨量仅为17.5 mm,监测到的径流量也出现了低谷,仅为383.4 m3。

2.2 山核桃林闭合区径流氮磷质量浓度的动态变化

2.2.1 山核桃林闭合区径流水氮质量浓度的年动态变化 径流总氮、硝态氮和铵态氮质量浓度的年际变化趋势基本一致。径流总氮、硝态氮和铵态氮质量浓度在1 a中的高值分别出现在7月1日,8月3日和9月12日,质量浓度分别为3.600,3.047和0.271 mg·L-1。10月以后,不同形态的氮质量浓度趋于平稳。2017年2月后,又呈现增加趋势,并在3月26日和3月21日出现第2次高峰(图3)。整个试验期间,总氮、水解氮、硝态氮和铵态氮的平均质量浓度分别为2.860,1.740,1.110和0.050 mg·L-1。水解氮、硝态氮和铵态氮分别占总氮的60.7%,38.9%和1.8%(表1)。

2.2.2 山核桃林闭合区径流水磷质量浓度的年动态变化 山核桃林闭合区径流磷质量浓度的动态变化见图4。在2016年6月中旬至9月下旬期间总磷质量浓度的波动较大。此后,2016年10月至2017年5月变化较为平稳,而水解磷质量浓度在整个水文年中变化趋势一直较平稳。在整个观测期间,总磷质量浓度的变化范围为0.01~0.11 mg·L-1,2016年9月至2017年5月,质量浓度在0~0.02 mg·L-1间小幅度变动。水解磷的平均质量浓度为0.01 mg·L-1,占总磷质量浓度的35.20%(表1)。

表1 山核桃闭合区径流不同形态氮磷的平均质量浓度及占比Table 1 Average concentration and proportion of N and P in different forms of runoff in the closed zone of a Carya cathayensis stand

图2 降雨量和径流量的动态变化Figure 2 Dynamic variation of rainfall and runoff

图3 径流氮质量浓度的动态变化Figure 3 Dynamic change of N concentration in runoff

2.3 山核桃林闭合区径流氮磷与土壤氮磷之间的相关性

2016年6-12月土壤闭合区有效氮磷质量分数和径流氮磷质量浓度的回归分析表明:山核桃林地径流中总氮质量浓度与土壤的碱解氮无显著的相关性(P>0.05,图5)。山核桃林闭合区径流总磷质量浓度与土壤有效磷质量分数呈显著线性正相关(P<0.05, 图 6)。

2.4 山核桃林闭合区径流氮磷流失负荷

由图7可知,山核桃林径流1 a中氮磷流失负荷的变化趋势大致相同:2017年9-12月,2017年3-5月,总氮和总磷的流失负荷均呈现逐月下降趋势。径流水中总氮的最大流失量(1 832 g·hm-2)出现在9月,而总磷的最大流失量(47.0 g·hm-2)出现在6月。2016年11月至2017年2月,总氮的月流失量相对较少(<600 g·hm-2),2016年10月至2017年5月,总磷的月流失量均在10 g·hm-2以下。在整个观测期内,总氮、总磷流失负荷总量分别为11.01 kg·hm-2和133.70 g·hm-2。

整个观测期间,山核桃林闭合区共收集冲积物170.9 kg,其中未通过1 mm筛孔的石块占总质量的83.7%。全氮和全磷的总量分别为73.51和7.20 g,林地土壤随泥沙流失的全氮和全磷的年际负荷分别为11.49和1.12 g·hm-2。径流水中,总氮和总磷的年际流失量(不包括泥沙中的氮和磷)分别为11.01 kg·hm-2和133.70 g·hm-2。因此,山核桃林闭合区随径流泥沙流失的氮磷年际流失总量(包括径流和泥沙中的氮和磷)分别为 11.02 kg·hm-2和 134.82 g·hm-2。

图4 径流磷元素质量浓度动态变化Figure 4 Dynamic change of P concentration in runoff

图5 径流总氮质量浓度与土壤碱解氮质量分数的相关分析Figure 5 Correlation analysis between TN concentration in runoff and available N content in soil

图6 径流总磷质量浓度与土壤有效磷质量分数的相关分析Figure 6 Correlation analysis between TP concentration in runoff and available P content in soil

3 讨论

3.1 闭合区降雨量和径流量的相关性分析

降雨是坡面径流的源动力,是影响径流量的主要因子[16]。本研究表明:降雨量越大,产生的径流量越大,山核桃林地降雨量和径流量存在线性正相关关系(y=7.739 5x+359.532 7,R2=0.884 8,P<0.05)。这与以往的研究一致(R2=0.69~0.99)[17-18], 但是也有学者研究[19-20]表明:降雨和径流之间存在的是指数相关性(R2=0.82~0.91),因此,研究区的土地利用方式、气候条件、地形地貌等存在一定差异会对径流和降雨的关系产生影响,现有的径流降雨模型无法模拟其他区域的径流发生情况。今后需要进一步研究降雨—径流的关系模型,提高预测模型的准确性。

图7 径流氮磷流失负荷Figure 7 Loss load of N and P in runoff

3.2 径流水不同形态氮磷元素的影响特征

径流水氮磷流失的结果差异很大:稻田径流中总氮质量浓度为1.82~3.06 mg·L-1[21],而雷竹Phyllostachys violascens林的变幅达到 3.82~6.82 mg·L-1[22]。 本研究结果为 2.01~3.60 mg·L-1, 介于稻田和雷竹林之间,与太湖、巢湖等富营养化淡水湖总氮质量浓度相仿[23],远远超过水体富营养化的发生质量浓度。硝态氮在总氮中的占比最高可达85.1%,而铵态氮占比只有11.6%。可见,硝态氮是径流氮素流失的主要形式,这与大多数学者的研究一致,其主要原因是土壤中铵态氮部分被作物吸收利用,另一部分很快被氧化为硝态氮,并且土壤胶体或土壤颗粒一般带负电,铵态氮带正电荷,易被土壤吸附,而硝态氮带负电,不易被土壤吸附,因此,降雨发生时,易随产生的径流流失[24-25]。本研究显示:水解氮占总氮的60.7%,山核桃林坡地土壤地表径流输出主要以可溶态为主,研究结果与宋娅丽等[26]的研究一致。有一些报道恰好相反。鲁耀等[6]研究发现:云南坡耕地红壤地表径流氮流失以颗粒态为主。这可能与影响地表径流氮磷流失的因素较多有关。2016年7-10月,径流总氮质量浓度明显高于其他时期,可能是由于7月下旬至8月中旬,林农喷施克无踪除草剂,进行人工除草,9月林农普遍采摘山核桃,破坏了林地土壤的地表覆盖,降雨时加速了土壤侵蚀,从而加快了氮元素随径流流失。

不同耕作方式或土地利用下磷的流失差异较大。不同耕作方式下稻田径流水总磷平均质量浓度最低为 0.097 mg·L-1[21], 而方山柿Diospyros kaki林土壤径流水中总磷质量浓度达 0.175~0.420 mg·L-1[27]。本研究结果为0.01~0.11 mg·L-1,平均总磷质量浓度为0.03 mg·L-1,流失的质量浓度并不高,但仍超过了水体富营养化临界值0.01~0.02 mg·L-1,需要引起关注。磷在土壤溶液中主要以磷酸盐的形式存在,随径流流失的平均质量浓度只有0.01 mg·L-1,主要原因可能是土壤本身磷质量分数较低,而且山核桃林地土壤为石灰性土,磷酸盐被土壤黏粒或碳酸钙吸附与固定,因此磷酸根在土壤径流中流失较少[28]。

3.3 径流-土壤有效氮磷养分相关性比较

常规用于土壤肥力监测的土壤分析的采样深度为15~25 cm,但SHARPLEY[29]研究表明:实际上与地表径流作用的只是最上部的5 cm左右,因此,本试验在土壤养分观测期间,采集0~10 cm土壤进行有效养分的测定。章明奎等[30]研究发现:排水的总氮平均质量浓度与土壤碱解氮显著相关,总磷也与土壤有效磷呈正相关。本研究结果显示:径流总氮质量浓度与土壤碱解氮质量分数无相关性,只有总磷质量浓度与土壤有效磷质量分数存在显著的线性正相关(P<0.05)。可能的原因是表层土壤碱解氮受降雨强度、降雨量等的显著影响,随径流流失的氮质量浓度变化较大,而对土壤有效磷的影响不明显,使得降雨过程产生的径流中磷元素变化与土壤有效磷质量分数存在一定的线性相关。

3.4 山核桃林闭合区与径流小区径流氮磷元素年际流失对比

本研究表明:总氮年际累积流失负荷为11.02 kg·hm-2,是同一地区山核桃林径流小区中总氮累积流失负荷(308.00~523.00 g·hm-2)的21.1~35.8倍[31], 其原因是前者是在坡面较长的闭合条件下测定的, 而后者是在坡面较短的径流小区内测定的。坡面较长的闭合区所产生的径流量要比坡面较短的径流小区所产生的径流量大得多,因为坡面越长,所产生的径流加速度就越大,因而产生径流量就越多。总磷年际累积流失负荷为134.82 g·hm-2,是黄程鹏等[31]研究不同施肥下山核桃林总磷累积流失负荷(20.90~36.90 g·hm-2)的3.7~6.5倍。利用径流小区试验估测往往大大地低估径流氮磷累积流失负荷。今后应当更加注重闭合区与径流小区之间的对比研究,以探讨明闭合区与径流小区之间存在的某种关系。

林地土壤随泥沙流失的全氮年际负荷为11.49 g·hm-2,全磷为1.12 g·hm-2,远远小于径流流失氮磷总量11.01 kg·hm-2和133.70 g·hm-2,可见山核桃林的氮磷养分流失以径流流失为主。因此,山核桃林的管理要着重采取减少径流的措施。山核桃林径流养分流失过程中,氮的流失量是磷流失量的82.35倍,氮流失量远大于磷流失量,与岳玉波等[32]的研究结果一致。这可能是山核桃林地土壤质地主要为砂土,土层较薄,保水性能差,对氮的缓冲力最弱,土壤养分含量易淋失[33],而土壤酸化严重,土壤中的活性铁、铝增加,易形成磷酸铁、磷酸铝沉淀,磷的有效性降低。整个试验观测期间,常规经营下的山核桃林只在5月初施用复合肥150 kg·hm-2,但氮和磷的年际流失量分别达到了11.02 kg·hm-2和134.82 g·hm-2,养分流失严重。5月施肥后,6月氮、磷流失负荷为1 351.26和46.97 g·hm-2,高于其他月份,可见随施肥时间推移,氮磷流失大致呈现递减趋势,施肥初期应采取一定措施减少肥力流失。

4 结论

①山核桃林降雨量和径流量存在显著线性正相关关系(y=7.739 5x+359.532 7,R2=0.884 8,P<0.05)。②山核桃径流中水解氮是氮素流失的主要形式,占总氮的60.7%,径流中磷素量很低。山核桃林地的径流氮流失量与土壤碱解氮质量分数之间没有显著的相关性,而径流磷元素流失量与土壤有效磷质量分数之间存在显著的线性关系(y=0.065 8x-0.028 7,R2=0.319 5,P<0.05)。③山核桃林养分流失以径流流失为主,其氮的流失量是磷的流失量的82.35倍。④用闭合法所测得的氮磷流失量更接近实际情况,而径流小区所得到的氮磷流失量远低于用闭合法所得到的数值,因而可能低估了养分流失量。

5 参考文献

[1] 闫道良,梅丽,夏国华,等.山核桃林地土壤和叶养分生态化学计量变异及重吸收特征[J].东北林业大学学报, 2013, 41(6): 41-45.YAN Daoliang, MEI Li, XIA Guohua,et al.Leaves nutrient resorption characteristics and stoichiometry of C, N,P and K inCarya cathayensisand soil[J].J Northeast For Univ,2013,41(6):41-45.

[2] 王正加,黄兴召,唐小华,等.山核桃免耕经营的经济效益和生态效益[J].生态学报,2011,31(8):2281-2289.WANG Zhengjia, HUANG Xingzhao, TANG Xiaohua,et al.Analysis on economic and ecological benefits of notillage management ofCarya cathayensis[J].Acta Ecol Sin,2011,31(8) :2281-2289.

[3] ZHU Q D,SUN J H,HUA G F,et al.Runoff characteristics and non-point source pollution analysis in the Taihu Lake Basin:a case study of the town of Xueyan,China [J].Environ Sci Pollut Res,2015,22(19):15029-15036.

[4] OENEMA O,ROEST C W J.Nitrogen and phosphorus losses from agriculture into surface waters;the effects of poli-cies and measures in The Netherlands [J].Water Sci Technol,1998,37(3):19-30.

[5] RAMOS M C,MARTÍNEZ-CASASNOVAS J A.Nutrient losses by runoff in vineyards of the Mediterranean Alt Penedès region (NE Spain) [J].Agric Ecosyst Environ,2006,113(1/4):356-363.

[6] 鲁耀,胡万里,雷宝坤,等.云南坡耕地红壤地表径流氮磷流失特征定位监测[J].农业环境科学学报,2012, 31(8):1544-1553.LU Yao, HU Wanli, LEI Baokun,et al.The monitoring of nitrogen and phosphorus loss by surface runoff in sloping red soil fields of Yunan Province, China [J].J Agro-Environ Sci,2012,31(8):1544-1553.

[7] WISCHMEIER W H,SMITH D D.Predicting Rainfall Erosion Losses:A Guide to Conservation Planning[M].Washington D C:United States Department of Agriculture,Agriculture Handbook,1978:537.

[8] BISSONNAIS Y L,BENKHADRA H,CHAPLOT V,et al.Crusting,runoff and sheet erosion on silty loamy soils at various scales and upscaling from m2,to small catchments [J].Soil Tillage Res,1998,46(1/2):69-80.

[9] STROOSNIJDER L.Measurement of erosion:is it possible [J].Catena,2005,64(2/3):162-173.

[10] DAI Xiaoyan,ZHOU Yuanqing,MA Weichun,et al.Influence of spatial variation in land-use patterns and topography on water quality of the rivers inflowing to Fuxian Lake,a large deep lake in the plateau of southwestern China[J].Ecol Eng,2017,99:417-428.

[11] GALOT J.Application of modified export coefficient method on the load estimation of non-point source nitrogen and phosphorus pollution of soil and water loss in semiarid regions [J].Environ Sci Pollut Res Int,2015,22(14):10647-10660.

[12] 吴希媛,张丽萍,倪含斌,等.青山湖流域不同地表覆盖降雨径流中氮磷流失过程研究[J].水土保持学报,2008, 22(1): 56-59.WU Xiyuan, ZHANG Liping, NI Hanbin,et al.Research on characteristics of nitrogen and phosphorus loss under different coverage in Qingshan Lake Valley [J].J Soil Water Conserv,2008,22(1):56-59.

[13] 彭圆圆,李占斌,李鹏.模拟降雨条件下丹江鹦鹉沟小流域坡面径流氮素流失特征[J].水土保持学报,2012, 26(2): 1-5.PENG Yuanyuan, LI Zhanbin, LI Peng.Slope of nitrogen loss in the rocky mountain area of parrot ditch under the condition of rainfall simulation [J].J Soil Water Conserv,2012,26(2):1-5.

[14] 张洋,樊芳玲,周川,等.三峡库区农桑配置对地表氮磷流失的影响[J].土壤学报,2016,53(1):189-201.ZHANG Yang, FAN Fangling, ZHOU Chuan,et al.Effects of crop/mulberry intercropping on surface nitrogen and phosphorus losses in Three Gorges Reservoir Area [J].Acta Pedol Sin,2016,53(1):189-201.

[15] 吴东,黄志霖,肖文发,等.三峡库区小流域土地利用结构变化及其氮素输出控制效应:以兰陵溪小流域为例[J].环境科学, 2016, 37(8): 2940-2946.WU Dong, HUANG Zhilin, XIAO Wenfa,et al.Land use structure change and its control effect of nitrogen output in a small watershed of Three Gorges Reservoir Area:a case study of Lanlingxi Watershed [J].Environ Sci,2016,37(8):2940-2946.

[16] 张晶晶,王力.坡面产流产沙影响因素的灰色关联法分析[J].水土保持通报,2011,31(2):159-162.ZHANG Jingjing, WANG Li.Gray correlation analysis on influential factors of runoff and erosion in slope lands [J].Bull Soil Water Conserv,2011,31(2):159-162.

[17] 郭爱军,畅建霞,王义民,等.近50年泾河流域降雨-径流关系变化及驱动因素定量分析[J].农业工程学报,2015, 31(14): 165-171.GUO Aijun, CHANG Jianxia, WANG Yimin,et al.Variation characteristics of rainfall-runoff relationship and driving factors analysis in Jinghe River basin in nearly 50 years [J].Trans Chin Soc Agric Eng,2015,31(14):165-171.

[18] 寇馨月,黄俊,姜学兵,等.不同下垫面径流小区次降雨对产流产沙的影响[J].水土保持通报,2017,37(2):27-31,38.KOU Xinyue, HUANG Jun, JIANG Xuebing,et al.Effects of rainfall on runoff and sediment under different underlying surfaces of runoff plots [J].Bull Soil Water Conserv,2017,37(2):27-31,38.

[19] CERDÀ A,MORERA A G,BODÍ M B.Soil and water losses from new citrus orchards growing on sloped soils in the western Mediterranean basin [J].Earth Surf Proces Landforms,2010,34(13):1822-1830.

[20] LIU Y,TAO Y,WAN K Y,et al.Runoff and nutrient losses in citrus orchards on sloping land subjected to different surface mulching practices in the Danjiangkou Reservoir area of China [J].Agric Water Manage,2012,110(3):34-40.

[21] 朱利群,夏小江,胡清宇,等.不同耕作方式与秸秆还田对稻田氮磷养分径流流失的影响[J].水土保持学报, 2012, 26(6): 6 - 10.ZHU Liqun, XIA Xiaojiang, HU Qingyu,et al.Effects of different tillage and straw return on nitrogen and phosphorus runoff loss paddy fields [J].J Soil Water Conserv,2012,26(6):6 - 10.

[22] 陈裴裴,吴家森,郑小龙,等.不同施肥对雷竹林径流及渗漏水中氮形态流失的影响[J].生态学报,2013, 33(18): 5599 - 5607.CHEN Peipei, WU Jiasen, ZHENG Xiaolong,et al.Effects of fertilization on nitrogen loss with different forms via runoff and seepage underPhyllostachy praecoxstands [J].Acta Ecol Sin,2013,33(18):5599 - 5607.

[23] 金相灿.湖泊富营养化控制与管理技术[M].北京:化学工业出版社,2001:1-6.

[24] 方楠,吴春山,张江山,等.天然降雨条件下典型小流域氮流失特征[J].环境污染与防治,2008,30(9):51-54.FANG Nan, WU Chunshan, ZHANG Jiangshan,et al.Characteristics of nitrogen loss in small watershed area during rainfall[J].Environ Pollut Control,2008,30(9):51 - 54.

[25] 李勇,杨林章,殷广德.太湖地区直播稻田氮素渗漏损失试验研究[J].植物营养与肥料学报,2010,16(1):99-104.LI Yong, YANG Linzhang, YIN Guangde.Experimental study on nitrogen leaching in a direct-seeding rice paddy of Taihu Lake Basin [J].Plant Nutr Fert Sci,2010,16(1):99 - 104.

[26] 宋娅丽,王克勤,董莉,等.滇中烤烟坡耕地地表径流氮素的动态变化特征[J].水土保持学报,2010,24(4): 7 - 11.SONG Yali, WANG Keqin, DONG Li,et al.Dynamic changes feature of nitrogen exports via overland runoff in sloping filed in the middle regions of Yunnan Province [J].J Soil Water Conserv,2010,24(4):7 - 11.

[27] 刘俏,张丽萍,胡响明,等.红壤丘陵区经济林坡地氮磷流失特征[J].水土保持学报,2014,28(3):185-190.LIU Qiao, ZHANG Liping, HU Xiangming,et al.Losses characteristics of nitrogen and phosphorus of economic forest in the slope of red soil hilly region of south China [J].J Soil Water Conserv,2014,28(3):185 - 190.

[28] 张新明,李华兴,刘远金.磷酸盐在土壤中吸附与解吸研究进展[J].土壤与环境,2001,10(1):77-80.ZHANG Xinming, LI Huaxing, LIU Yuanjin.Study progress of phosphate adsorption and desorption in soils [J].Soil Environ Sci,2001,10(1):77 - 80.

[29] SHARPLEY A N.Agricultural phosphorus and eutrophication [J].J Environ Qual,1999,27(2):251 - 257.

[30] 章明奎,姜宏.水田土肥流失特征的初步研究[J].土壤侵蚀与水土保持学报,1999,5(6):21-23,60.ZHANG Mingkui, JIANG Hong.Priliminary study on loss of soil and nutrients of paddy field by drainage [J].J Soil Erosion Soil Water Conserv,1999,5(6):21 - 23,60.

[31] 黄程鹏,吴家森,许开平,等.不同施肥山核桃林氮磷径流流失特征[J].水土保持学报,2012,26(1):43-46.HUANG Chengpeng, WU Jiasen, XU Kaiping,et al.Runofflosses of nitrogen and phosphorus underCarya cathayensisSarg.stand with different fertilization [J].J Soil Water Conserv,2012,26(1):43 - 46.

[32] 岳玉波,沙之敏,赵峥,等.不同水稻种植模式对氮磷流失特征的影响[J].中国生态农业学报,2014,22(12):1424 - 1432.YUE Yubo, SHA Zhimin, ZHAO Zheng,et al.Effects of rice cultivation patterns on nitrogen and phosphorus leaching and runoff losses [J].Chin J Eco-Agric,2014,22(12):1424 - 1432.

[33] 侯彦林,赵慧明,李红英.中国农田氮肥面源污染估算方法及其实证(Ⅲ)估算模型的实证[J].农业环境科学学报, 2009, 28(7): 1337 - 1340.HOU Yanlin, ZHAO Huiming, LI Hongying.Estimation and demonstration of nitrogen non-point pollution in China(Ⅲ) Demonstration of the model[J].J Agro-Environ Sci,2009,28(7):1337 - 1340.

猜你喜欢
年际山核桃氮磷
玻利维亚拟建新的氮磷钾肥料工厂
北太平洋海温Victoria模态与ENSO年际关系的非对称特征
常规施肥与氮磷钾施肥对CX-80雪茄烟品质的影响
气候变化和人类活动对中国陆地水储量变化的影响研究
北纬30°中层顶区域钠与铁原子层的结构和年际变化
山核桃
ENSO强度模拟差异对全球变暖下热带太平洋大气变化预估结果的影响❋
松鼠的山核桃
淤泥土水稻“3414”氮磷互作肥效试验