规模化猪场机械通风水冲粪式栏舍夏季氨日排放特征

2018-09-03 03:28王文林韩宇捷曾杰亮范军旗李文静
农业工程学报 2018年17期
关键词:排放口栏舍肥猪

王文林,刘 筱,韩宇捷,杜 薇,刘 波,曾杰亮,童 仪,高 岩,关 雷,范军旗,李文静,何 斐



规模化猪场机械通风水冲粪式栏舍夏季氨日排放特征

王文林1,刘 筱2,韩宇捷2,杜 薇1,刘 波2※,曾杰亮2,童 仪2,高 岩2,关 雷2,范军旗2,李文静1,何 斐1

(1. 环境保护部南京环境科学研究所,南京 210042; 2. 南通大学地理科学学院,南通 226007)

选取长三角地区典型机械通风水冲粪模式养猪场,针对不同生长阶段的肥猪栏舍和不同类型的母猪栏舍排放口氨排放进行同时监测(其中,育肥猪按质量分保育(<24 kg)、育肥-Ⅰ(24~60 kg)、育肥-Ⅱ(60~120 kg)3个阶段,母猪分为妊娠猪与分娩猪2种类型),估算各栏舍氨排放通量,分析各栏舍氨排放特征,探讨各生长阶段对氨排放贡献。研究结果表明,保育、育肥-Ⅰ、育肥-Ⅱ、妊娠、分娩栏舍氨质量浓度分别为(0.97±0.40)、(3.37±0.70)、(5.45±2.30)、(2.19±1.06)、(1.44±0.48)mg/m3;各栏舍氨排放具有显著的日变化过程,早晨氨排放呈波动增大趋势,午后开始降低,至夜间保持低值排放;小时氨排放速率与温度呈极显著正相关,与湿度呈显著负相关;各生长阶段氨排放存在差异,保育、育肥-Ⅰ、育肥-Ⅱ、妊娠、分娩栏舍日排放速率分别为0.85、6.53、8.20、10.39和13.86 g/(头·d);保育、育肥-Ⅰ和育肥-Ⅱ阶段对肥猪氨排放的贡献率分别为3.64%、26.11%和70.25%,妊娠猪与分娩猪对母猪氨的贡献率分别为75.32%和24.68%,母猪的氨排放速率是肥猪的1.87倍。

氨;排放控制;污染;规模化养猪场;水冲粪

0 引 言

氨(NH3)是大气中的碱性气体,其与二氧化硫、氮氧化物迅速形成细颗粒物(PM2.5)[1-3],是重污染天气二次无机颗粒物爆发式增长的重要前体物[4],对雾霾的形成和大气污染有着重要影响。畜禽养殖是大气氨的主要排放源,研究表明中国畜禽养殖氨排放量占总排放量54.06%。中国作为养猪大国,由于过于追求肉产量,在猪日粮中加入过高的蛋白质,导致粪便中产生过高的氨排放,中国养猪业氨排放总量远远高于欧美国家[5],其氨排放占畜禽养殖业氨排放量之首[6]。因此,开展典型规模化猪场氨排放特征研究,进而提出氨排放系数,核算区域养猪的氨排放量,对于区域PM2.5粒子源解析,阐明典型农业源氨排放污染现状、控制大气颗粒物污染、改善区域环境空气质量都有着非常重要的意义。

国外针对猪舍氨排放研究起步较早,开发了面向开放性栏舍的通风量监测方法[7-9],着重探讨了栏舍的通风方式对于氨排放的影响[10-11],分析了不同清粪方式下栏舍氨排放特征[12-14]。中国研究尚处于起步阶段,国内学者对开放性猪舍不同季节氨排放通量进行了监测与估算[15-16],初步探讨了栏舍地板结构对栏舍氨排放的影响[17]。对栏舍氨排放与温度、湿度、通风量等主要影响因子还缺乏系统研究。此外,分析同一时间段内不同生长阶段育肥猪以及母猪的氨排放特征,辨明各生长阶段肥猪、不同类型母猪对氨排放贡献,为提出科学可靠的生猪氨排放系数提供科学依据,对准确测算区域养猪氨排放量具有重要意义。但是,目前还无针对同一时间内不同生长阶段肥猪与母猪的氨排放特征的系统研究,对于不同生长阶段肥猪、不同类型母猪对氨排放贡献,以及肥猪与母猪氨排放之间的相互关系尚不清楚。

本研究选取典型规模化猪场,监测不同生长阶段肥猪与母猪栏舍氨排放浓度,核算不同生长阶段育肥猪与母猪的排放速率,探究规模化养猪场栏舍氨排放特征,辨析氨排放重要影响因素,探讨生长阶段肥猪、不同类型母猪对氨排放贡献,以及肥猪与母猪氨排放之间的相互关系,以期为区域畜禽养殖氨排放核算提供技术支撑。

1 材料与方法

1.1 养殖场概况

南通市2015年生猪、家禽畜禽养殖量在长三角16个城市中均位居首位。如皋市是南通下属市县中的养殖大市,位于长江中下游里下河流域,2015年底,如皋市全市全年生猪饲养量203.47万头,生猪存栏量68.56万头,家禽饲养量3 636.07万羽,家禽存栏量1126.68万羽、奶牛存栏量0.13万头,生猪、家禽和奶牛的规模养殖占比分别达90.21%、95.78%和91%[18]。

选取的猪场位于如皋市搬经镇严鲍村,该猪场为江苏省畜牧生态健康养殖示范基地,母猪存栏600头,肥猪年出栏15 000头左右。现占地面积7.56 hm2,建筑面积12 000 m2,养殖场平面图见图1。栏舍采用智能化母猪饲喂站、全自动喂料线及全自动化通风、采暖系统,地面为水泥实心地板,采用人工水冲粪;粪水通过地下管道集中到集粪池提升至沼气发酵池进行沼气发电。沼液、沼渣返回农田作有机肥料。栏舍为全封闭式,舍内设有温度探头,进行温控,当舍内达到设定温度以上时,栏舍一侧风机排风扇(窗)开启,舍外新鲜空气由栏舍另一侧通风窗(夏季开启湿帘)进入,此时舍内废气由风机排风扇(窗)排出,当舍内温度回落到设定温度以下,风机排风扇(窗)关闭,不同季节开启的排风扇个数不同。排风起到调节温度及降低舍内氨气等其他气体浓度的作用,养殖与栏舍概况见表1。

表1 研究猪场养殖与栏舍概况

1.2 监测点布设与采样测定

在不同类型的栏舍进风口和出风口设置采样点(见图1),其中进风口采样点位于湿帘中心位置,出风口采样点位于每个开启的排风扇中心点偏上(经前期监测此位置能代表排风口的平均速率),采样点与窗口平面的水平距离为10 cm。同时设置背景采样点,在厂区内常年盛行风向上风向的空旷地带(半径15 m内无栏舍和粪污处理设施),采样点高为1.5 m(图1)。

图1 养猪场平面与监测点布设示意图

运用便携式氨气检测仪(smart pro 10,监测量程为0~100×10−6,分辨率为0.01×10−6,传感器为瑞士MEMBRAPOR-CR50,检测精度为±2%F·S)连续测定进风口、排放口、背景点氨浓度,连续监测72 h,每分钟记录并存储1次数据,测定前气体检测仪用标准气体进行标定校正。使用便携气象站(美国Kestrel 5000)同步测定排风口排风速率,每分钟记录并存储1次数据。在各采样点通过便携式气象站同步测定气象要素(温度、气压、湿度、风速)每1分钟记录并存储1次数据。监测于2017年7月2日至4日开展,连续监测3 d。

1.3 计算方法

1.3.1 通风量

式中V为每小时栏舍通风量,m3/h;V为排风口每小时平均排风速率,m/s;为排风口总面积,m2;为排风口每小时累计排风时长,min/h;为采样点每小时平均温度,K;0为标准状况下气体的温度,273 K;为采样点每小时平均气压,kPa;0为标准状况下气体的压力,101.3 kPa。

1.3.2 氨排放量

式中a为每小时氨排放量,mg/h;in,out分别为进,排风口氨气小时平均浓度,mg/m3。

1.3.3 氨排放速率

式中为日排放速率,g/(头·d);为栏舍中畜禽个体数。

2 结果与分析

2.1 栏舍氨排放浓度分析

监测期间栏舍排风口和背景监测点氨平均排放浓度、平均通风速率、平均温度、平均湿度见表2。从温度来看,各栏舍排风口的平均温度在26.2~27.4 ℃之间,要高于背景平均温度的25.1 ℃,这主要与栏舍内猪自身散热有关。从湿度来看,除保育栏舍外其他栏舍湿度要高于背景值,其中,分娩、育肥-Ⅱ,妊娠栏舍排风口平均湿度分别达到98.4%、93.93%和91.3%。湿度的升高主要受湿帘增湿和水冲清粪增湿的影响。各栏舍的通风速率与所开启的排风扇大小、数量及通风时间有关,妊娠栏舍、育肥-Ⅱ栏舍由于所养猪只个体质量大且数量多,降温需求高,通风速率大,平均通风速率分别达到362.41和355.25 m3/min。

背景点氨平均质量浓度为0.2mg/m3,各栏舍排放口氨平均排放质量浓度在0.97~5.45 mg/m3之间,显著高于背景值。从肥猪栏舍来看,育肥-Ⅱ栏舍排风口氨平均排放质量浓度最大,平均值为5.45mg/m3,最大值达到11.78 mg/m3;其次是育肥-Ⅰ栏舍,平均值为3.37 mg/m3,最大值达到4.72 mg/m3;保育栏舍排风口氨排放平均质量浓度最低,为0.97mg/m3,分别为育肥-Ⅱ和育肥-Ⅰ栏舍的17.8%和28.8%。从母猪栏舍来看,妊娠栏舍排风口氨排放平均浓度要高于分娩栏舍,前者是后者的1.52倍。

表2 栏舍排风口和背景点的氨平均浓度、通风速率、平均温度与平均湿度

通过分析各栏舍排放氨浓度日变化过程(见图2)发现,各栏舍排放口氨浓度存在明显的日变化过程,大致表现为早晨氨浓度开始波动上升,至午后开始波动降低,夜间氨浓度保持低值且波动不大。各栏舍排放口氨浓度最大值均出现在上午06:00~08:00左右,与该时段栏舍清粪以及猪晨起后的活动有关,育肥-Ⅱ栏舍由于养殖量和猪质量较大,这一过程尤为明显;最小值出现在夜间,这是由于夜间粪污人为扰动,同时猪自身活动较少。育肥-Ⅱ栏舍由于养殖数量大,个体质量大,全天排放口氨的浓度要高于其他栏舍,同时受清粪、饲喂扰动后的波动要大于其他栏舍。保育栏舍全天各时段排放口氨浓度要基本小于其他栏舍,这与舍内所饲养猪的生长日龄较短、质量轻、进食量少有关。在母猪栏舍中,妊娠栏舍白天排放口氨浓度要高于分娩栏舍,妊娠栏舍母猪数量多有关,而二者在夜间氨浓度差异不大。通过各栏舍氨排放浓度的相关性分析发现,各栏舍排放口氨浓度相互呈极显著正相关(见表3),表明各栏舍排放口氨浓度具有相似的日变化趋势。

注:图中数据为3日同时刻平均值。

表3 各栏舍排风口每20 min氨浓度的相关关系(Pearson系数)

注:**表示极显著相关(<0.01)。

Note: ** indicates extremely significant correlation (<0.01).

2.2 栏舍氨排放速率分析

2.2.1 小时排放速率

各栏舍每小时单位畜禽氨排放量(小时排放速率)日变化过程见图3。由图3可知,栏舍每小时单位畜禽氨排放量具有显著的日变化过程,与栏舍氨排放浓度变化趋势相似,即早晨氨排放开始波动增大,午后开始降低,至夜间保持低值排放。白天受到清粪、饲喂活动的扰动以及猪自身活动的影响,氨排放出现波动峰值。其中,清粪过程对氨排放影响较大,肥猪各栏舍氨排放峰值均出现在清粪时间段(上午06:00-08:00)。保育、育肥-Ⅰ、育肥-Ⅱ每日最大小时氨排放速率平均值分别为77.4、349.2、715.9 mg/(h·头),育肥-Ⅱ猪分别是育肥-Ⅰ猪、保育猪的2.05倍和9.25倍。夜间猪处于睡眠状态,基本无人为扰动,20:00至凌晨04:00保持低值排放,保育、育肥-Ⅰ、育肥-Ⅱ每日最小氨排放速率平均值分别为16.0、192.3、153.4 mg/(h·头)。保育、育肥-Ⅰ、育肥-Ⅱ栏舍日均排放量别为253.70、1 174.69和2 789.07 g/d,育肥-Ⅱ栏舍分别是育肥-Ⅰ栏舍、保育栏舍2.37倍和10.99倍。母猪栏舍氨排放峰值均出现上午07:00时,妊娠和分娩猪舍每日最大小时排放速率平均值分别为833.8和1 163.9 mg/(h·头)。从排放总量上来看,妊娠和分娩栏舍日均排放量别为1 703.20和360.40 g/d。分娩栏舍要小于妊娠栏舍,主要是由于分娩栏舍仅有26头母猪,新出生仔猪体质量小,以饮用母乳为食,氨排放很少。

注:图中数据为3日同时段释放速率平均值。

2.2.2 日排放速率

根据各类型猪氨排放速率分别计算各类型猪的日排放速率。各生长阶段肥猪的每天排放速率分别为0.85(保育)、6.53(育肥-Ⅰ)和8.20 g/(头·d)(育肥-Ⅱ),随着个体质量增加排放量也逐渐增大,个体质量由10 kg增加到85 kg,单位个体肥猪的氨日排放量相应增大了8.64倍。妊娠猪和分娩猪的日排放速率分别为10.39和13.86 g/(头·d),分娩猪是妊娠猪的1.33倍。

2.3 栏舍氨排放影响因素

栏舍氨排放受多种因素的共同影响。猪舍内粪、尿是舍内氨的主要来源,猪只自身活动也会产生一定量的氨[19-21]。猪粪便中的氨氮主要来源于饲料中蛋白质在猪消化道中分解产生的氨基酸[22],饲料中的粗纤维比例也对粪便中氨排放存在影响[23-24]。此外,饲料进食量会决定猪的粪尿排泄量。随着个体生长,单位个体的进食量也在增加,导致粪尿排泄量增多,进而增加氨排放[25]。育肥-Ⅱ阶段的肥猪以及母猪氨排放量较大与进食量大有关(图3)。清粪过程中导致的粪尿扰动会增大氨释放,在每天粪便清理时间造成粪尿翻动,饲喂时间栏舍内猪的活动强度增大,导致出现氨排放峰值(图3)。

通过分析各栏舍排放口氨小时排放速率与温度、湿度相关性发现,氨排放速率与温度呈极显著正相关(图4),与湿度呈显著负相关(图5),这与相关研究结果一致[26]。进一步对栏舍氨小时排放速率与排风口温度、湿度的响应关系进行综合分析,通过线性回归分析发现栏舍氨排放日变化过程与排放口的温度和湿度的日变化过程存在很好相关关系,即一定温湿度范围内,氨排放速率与温、湿度响应关系显著,结果见表4。表明温度、湿度是影响养殖场栏舍氨排放的重要因素,在温度高、湿度低季节氨排放量会增大,反之则减小。这主要由于较高的温度能提高脲酶活性,促进粪便中含氮物质分解释放出氨[27],则在一定的通风条件下栏舍会向环境中排放更多的氨。此外,由于氨的水溶性较大,湿度增大会降低空气环境中氨浓度[27]清粪方式决定了粪、尿在舍内的存积时间及混合程度,以及粪尿受扰动的程度,进而会影响栏舍氨排放[19,28]。水冲粪相比干清粪,粪便扰动相对较小,加之水冲增加湿度,一定程度上会减少氨的排放。以育肥-Ⅱ阶段为例,本研究获得的日氨排放速率为8.20 g/(头·d),相同猪只质量、机械通风、干清粪模式栏舍夏季氨排放速率为11.89 g/(头·d)[6],水冲粪模式要比干清粪模式小31.03%(表5)。对比育肥-Ⅰ阶段和妊娠猪相关研究结果发现,本研究的水冲粪模式下的日氨排放速率相比于干清粪模式也具有相同的结果(表5)。水泡粪虽减少了清粪对粪尿的扰动,但粪尿在栏舍中存储时间较长,粪尿会持续释放氨进而增加栏舍的释放量。以分娩猪为例,本研究水冲粪模式的氨日排放速率为13.86 g/(头·d),相比于水泡粪模式的19.26 g/(头·d),为后者的71.96%。

图4 氨排放速率与温度相关关系

图5 氨排放速率与湿度相关关系

表4 氨排放速率与温度、湿度响应关系

注:1为温度,℃;2为湿度,%;为氨排放速率,mg·(h·头)-1。

Note:1indicates temperature, ℃;2indicates humidity, %;indicates ammonia emission rate, mg·(h·头)-1).

栏舍通风方式决定了栏舍通风量,对栏舍产生的氨气等污染气体排放量有直接作用[29-30]。此外,栏舍通风方式会影响猪舍的温度、湿度,进而影响栏舍氨排放[31]。机械通风栏舍通常根据舍内温度设定排风扇开关频率与排风周期。由于夏季温度较高,排风扇尽量开启以维持舍内温度不宜过高,因而夏季通风量较大。从理论上讲,夏季相同清粪模式下机械通风栏舍相对于通量小的自然通风栏舍的氨排放量有增大的风险。陈园等[6]研究的干清粪模式机械通风栏舍的氨排放速率要大于相同清粪模式自然通风栏舍[32]氨排放速率(表5)。一般机械通风栏舍都配置湿帘,若运行良好在通风降温的同时可最大程度的增大栏舍湿度,进而通过降温、增湿来减少空气环境中的氨气浓度。本研究采用湿帘降温和机械通风模式,并采用水冲粪方式会进一步加大栏舍环境湿度,会减少栏舍内氨的产生进而会降低氨排放量。这可能是本研究氨排放速率小于通风模式栏舍氨排放的主要原因。

表5 国内外相关研究对比情况

2.4 各生长阶段对氨排放贡献

根据肥猪的各生长阶段的养殖周期天数(表1),根据各阶段实测日排放速率核算出肥猪整个生长周期的氨排放量,进而获得肥猪氨日排放速率为5.94 g/(头·d)。保育、育肥-Ⅰ和育肥-Ⅱ阶段对肥猪氨排放的贡献率分别为3.64%、26.11%和70.25%(图6a)。同样,根据妊娠猪和分娩猪养殖周期天数和实测氨日排放速率核算出母猪整体日排放速率为11.07 g/(头·d),妊娠猪与分娩猪对母猪氨排放的贡献率分别为75.32%和24.68%(图6b)。母猪的排放速率是肥猪的1.87倍。

各生长阶段肥猪与不同类型母猪由于进食量、日常活动、粪尿排泄量等生理过程不同,导致氨排放量存在明显差异。从生猪养殖实际来看,同一时间段内各个生长阶段的肥猪与母猪是同时进行养殖。那么,准确评估各生长阶段肥猪、不同类型母猪对氨排放贡献程度,对提出科学可靠的生猪氨排放系数,进而构建高精度、动态的区域生猪氨排放清单更有实际意义。应结合日龄、粪及尿的排放量,开展全年为周期的系统研究。

a. 肥猪

a. Fattening pig

b. 母猪

3 结 论

1)各栏舍氨排放浓度存在显著差异,保育、育肥-Ⅰ、育肥-Ⅱ、妊娠、分娩栏舍氨质量浓度分别为(0.97±0.40)、(3.37±0.70)、(5.45±2.30)、(2.19±1.06)和(1.44±0.48) mg/m3。

2)各栏舍氨排放具有显著的日变化过程,早晨氨排放开始波动增大,午后开始降低,至夜间保持低值排放;各栏舍受到清粪与猪只自身活动影响在早晨06:00-08:00出现峰值,保育、育肥-Ⅰ、育肥-Ⅱ、妊娠和分娩栏舍每日最大小时氨排放速率分别为77.4、349.2、715.9、833.8和1 163.9 mg/(h·头)。

3)饲喂、清粪等人为扰动会增加栏舍的氨排放,小时氨排放速率与温度呈极显著正相关,与湿度呈显著负相关。

4)保育、育肥-Ⅰ、育肥-Ⅱ、妊娠、分娩栏舍日排放速率分别为0.85、6.53、8.20、10.39和13.86 g/(头·d);经核算肥猪和和母猪的氨日排放速率分别为5.94和11.07 g/(头·d);保育、育肥-Ⅰ和育肥-Ⅱ阶段对肥猪氨排放的贡献率分别为3.64%、26.11%和70.25%;妊娠猪与分娩猪对母猪氨排放的贡献率分别为75.32%和24.68%;母猪的氨排速率是育肥猪的1.87倍。

[1] Feng L, Liao W. Legislation, plans, and policies for prevention and control of air pollution in China: Achievements, challenges, and improvements[J]. Journal of Cleaner Production, 2016, 112, Part 2: 1549-1558.

[2] Ho K F, Ho S S H, Huang R J, et al. Chemical composition and bioreactivity of PM2.5during 2013 haze events in China[J]. Atmospheric Environment, 2016, 126: 162-170.

[3] Yang F, Tan J, Zhao Q, et al. Characteristics of PM2.5speciation in representative megacities and across China[J]. Atmos, Chem,Phys,2011, 11(11): 5207-5219.

[4] 薛文博,唐晓龙,雷宇,等. 中国氨排放对PM2.5污染的影响[J]. 中国环境科学,2016,36(12):3531-3539.

Xue Wenbo, Tang Xiaolong, Lei Yu, et al. Impacts of ammonia emission on PM2.5pollution in China[J]. China Environmental Science, 2016, 36(12): 3531-3539. (in Chinese with English abstract)

[5] Huang X, Song Y, Li M, et al. A high-resolution ammonia emission inventory in China[J]. Global Biogeochemical Cycles, 2012, 26(1): 1-14.

[6] 陈园. 上海市典型规模化猪场氨排放特征研究[D]. 上海:华东理工大学,2017.

Chen Yuan. Study on Characteristics of Ammonia Emisssion from Typical Large Scale Pig Farm in Shanghai[D]. Shanghai: East China Univerisity of Sicenc and Techonology, 2017.

[7] Kiwan A, Berg W, Fiedler M, et al. Air exchange rate measurements in naturally ventilated dairy buildings using the tracer gas decay method with 85Kr, compared to CO2mass balance and discharge coefficient methods[J]. Biosystems Engineering, 2013, 116(3): 286-296.

[8] Lassey K R. On the importance of background sampling in applications of the SF6 tracer technique to determine ruminant methane emissions[J]. Animal Feed Science and Technology, 2013, 180(1/2/3/4): 115-120.

[9] Scholtens R, Dore C J, Jones B M R, et al. Measuring ammonia emission rates from livestock buildings and manure stores—part 1: development and validation of external tracer ratio, internal tracer ratio and passive flux sampling methods[J]. Atmospheric Environment, 2004, 38(19): 3003-3015.

[10] Mosquera J, Monteny G J, Erisman J W. Overview and assessment of techniques to measure ammonia emissions from animal houses: The case of the Netherlands[J]. Environmental Pollution, 2005, 135(3): 381-388.

[11] Ogink N W M, Mosquera J, Calvet S, et al. Methods for measuring gas emissions from naturally ventilated livestock buildings: Developments over the last decade and perspectives for improvement[J]. Biosystems Engineering, 2013, 116(3): 297-308.

[12] Kavolelis B. Impact of animal housing systems on ammonia emission rates[J]. Polish Journal of Environmental Studies, 2006, 15(5): 739-745.

[13] Kim K Y, Han J K, Kim H T, et al. Quantification of ammonia and hydrogen sulfide emitted from pig buildings in Korea[J]. Journal of Environmental Management, 2008, 88(2): 195-202.

[14] Philippe F X, Laitat M, Canart B, et al. Comparison of ammonia and greenhouse gas emissions during the fattening of pigs, kept either on fully slatted floor or on deep litter[J]. Livestock Science, 2007, 111(1/2): 144-152.

[15] 耿红,高芳,陈霖,等. 畜禽源氨气排放因子估算方法研究[J]. 环境科学学报, 2017,37(8):3077-3084.

Geng Hong, Gao Fang, Chen Lin, et al. Estimation of ammonia emission factors for livestock and poultry breeding[J]. Journal of Environmental Science, 2017, 37(8): 3077-3084. (in Chinese with English abstract)

[16] 朱志平,董红敏,尚斌,等. 育肥猪舍氨气浓度测定与排放通量的估算[J]. 农业环境科学学报,2006,25(4):1076-1080.

Zhu Zhiping, Dong Hongmei, Shang Bin, et al. Measurement of Ammonia concentration and estimation on emission flux of finishing pig in pig house[J]. Journal of Agro-Environment Science, 2006, 25(4): 1076-1080. (in Chinese with English abstract)

[17] 汪开英,代小蓉,李震宇,等. 不同地面结构的育肥猪舍NH3排放系数[J]. 农业机械学报,2010,41(1):163-166.

Wang Kaiyin, Dai Xiaorong, Li Zhenyu, et al. NH3emission factors of fattening pig buildings with different floor systems.[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(1): 163-166. (in Chinese with English abstract)

[18] 如皋市地方志编纂委员会办公室. 如皋市统计年鉴2016[M]. 北京:方志出版社,2017.

[19] Aarnink A J A, Berg A J V D, Keen A, et al. Effect of slatted floor area on ammonia emission and on the excretory and lying behaviour of growing pigs[J]. Journal of Agricultural Engineering Research P, 1996, 64(4): 299-310.

[20] Philippe F X, Cabaraux J F, Nicks B. Ammonia emissions from pig houses: Influencing factors and mitigation techniques[J]. Agriculture Ecosystems & Environment, 2011, 141(3/4): 245-260.

[21] 赵素芬,汪开英. 集约化养猪场NH3的排放及控制研究进展[J]. 农机化研究,2004(1):88-90.

Zhao Sufen, Wang Kaiying. Study on reducing ammonia from the intensive swine[J]. Journal of Agricultural Mechanization Research, 2004(1): 88-90. (in Chinese with English abstract)

[22] 王建彬,田林春,王倩倩,等. 谈利用营养调控减少猪粪尿中氮、磷对环境的污染[J]. 猪业科学,2009,26(2):62-64.

[23] Low A G. Role of Dietary Fibre in Pig Diets-recent Advances in Animal Nutrition-4[M]. Recent Advances in Animal Nutrition, Elsevier Ltd, 1985: 87-112.

[24] Webb J, Broomfield M, Jones S, et al. Ammonia and odour emissions from UK pig farms and nitrogen leaching from outdoor pig production. A review[J]. Science of the Total Environment, 2014, s470/471(2): 865-875.

[25] 代小蓉. 集约化猪场NH3的排放系数研究[D]. 杭州:浙江大学,2010. Dai Xiaorong. Study on Ammonia Emission Factors in Concentrated Pig Farm[D]. Hangzhou: Zhejiang University, 2010.

[26] Blunden J, Aneja V P, Westerman P W. Measurement and analysis of ammonia and hydrogen sulfide emissions from a mechanically ventilated swine confinement building in North Carolina[J]. Atmospheric Environment, 2008, 42(14): 3315-3331.

[27] Lemay S P, Barber E M, Hill G A, et al. A dynamic model of ammonia emission from urine puddles[J]. Biosystems Engineering, 2008, 99(3): 390-402.

[28] Hartung J, Phillips V R. Control of gaseous emissions from livestock buildings and manure stores[J]. Journal of Agricultural Engineering Research, 1994, 57(3): 173-189.

[29] Blanes-Vidal V, Hansen M N, Pedersen S, et al. Emissions of ammonia, methane and nitrous oxide from pig houses and slurry: Effects of rooting material, animal activity and ventilation flow[J]. Agriculture Ecosystems & Environment, 2008, 124(3/4): 237-244.

[30] Ye Z, Zhang G, Seo I H, et al. Airflow characteristics at the surface of manure in a storage pit affected by ventilation rate, floor slat opening, and headspace height[J]. Biosystems Engineering, 2009, 104(1): 97-105.

[31] Granier R, Guingand N, Massabie P. Influence of hygrometry, temperature and air flow rate on the evolution of ammonia levels[J]. 1996, 14(Supp. 3): 33-48.

[32] Xu W, Zheng K, Liu X, et al. Atmospheric NH3dynamics at a typical pig farm in China and their implications[J]. Atmospheric Pollution Research, 2014, 5(3): 455-463.

[33] Aarnink A J A, Keen A, Metz J H M, et al. Ammonia emission patterns during the growing periods of pigs housed on partially slatted floors[J]. Journal of Agricultural Engineering Research, 1995, 62(2): 105-116.

[34] Ni J Q, Heber A J, Diehl C A, et al. SE-Structures and environment: Ammonia, hydrogen sulphide and carbon dioxide release from pig manure in under-floor deep pits[J]. Journal of Agricultural Engineering Research, 2000, 77(1): 53-66.

[35] 朱志平,董红敏,尚斌,等. 妊娠猪舍氨气及氧化亚氮浓度测定与排放通量的估算[J]. 农业工程学报,2006,22(增刊2):175-178.

Zhu Zhiping, Dong Hongmin, Shang Bin, et al. Measurement of ammonia and nitrous oxide concentrations and estimation of the emission rates from gestation pig buildings[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2006, 22(Supp.2): 175-178. (in Chinese with English abstract)

[36] Liu Z, Powers W, Murphy J, et al. Ammonia and hydrogen sulfide emissions from swine production facilities in North America: A meta-analysis[J]. Journal of Animal Science, 2014, 92(4): 1656-1665.

Daily emission characteristics of ammonia from typical industrial pig farm with manure cleaning by rising water in summer

Wang Wenlin1, Liu Xiao2, Han Yujie2, Du Wei1, Liu Bo2※, Zeng Jieliang2, Tong Yi2, Gao Yan2, Guan Lei2, Fan Junqi2, Li Wenjing1, He Fei1

(1.210042; 2.226007,)

Ammonia (NH3), as the only reactive alkaline gas, plays a crucial role in the neutralization of atmospheric sulfuric or nitric acid to generate ammonium salts, thereby affecting the acidity of cloud water and aerosols. At present, the ammonia emissions which is the main component of fine particulate (particulate matter equal to or less than 2.5m in aerodynamic diameter; PM2.5), has become a global hot issue. Livestock and poultry breeding is the main emission source of ammonia, and the total amount of ammonia released by China's pig industry is much higher than that of Europe and North America. An in-depth study about ammonia emission from livestock sources may help policy-makers to develop emission reduction scheme and ease the haze. Generally, pig is considered to be the major contributor to ammonia emission. Therefore, in this study, we investigated NH3emissions from a pig farm in Yangtze River delta region which were equipped with typical mechanical ventilation system and manure collection system cleaning by rising water. It monitored the ammonia emissions from different houses at the same time which included different growth stages of the fattening pigs and sows (among them, the fattening pigs can be divided in three phases according to the weight, Nursery (<24 kg), and Fattening-I (24-60 kg) and Fattening-Ⅱ(60-120 kg).The sow can be divided into Gestation and Farrowing, and the ammonia emission flux was determined. Meanwhile, in this study, we analyzed the ammonia emission characteristics to explore the contribution of ammonia emissions in different growth stage. The results showed that the NH3concentrations of Nursery, Fattening-Ⅰ, Fattening-Ⅱ, Gestation and Farrowing were (0.97±0.4), (3.37±0.70) and (5.45±2.30), (2.19±1.06) and (1.44±0.48) mg/m3, respectively. The ammonia emission in each column had a significant daily change process. In the morning, the ammonia discharge were fluctuated and increased, then started to decrease in the afternoon, and the value kept low at night. The ammonia emission rate was significantly positively correlated with the temperature and was negatively correlated with the humidity. The daily NH3emissions rate of Nursery, Fattening-Ⅰ, Fattening-Ⅱ, Gestation and Farrowing were 0.85, 6.53, 8.20, 10.39 and 13.86 g/(pig·d). In fattening pigs, the contribution rate of Nursery, Fattening-Ⅰ, Fattening-Ⅱwere 3.64%, 26.11% and 70.25%. In sows, the contribution rate of Gestation and Farrowing was 75.32% and 24.68%. Artificial disturbance, such as feeding and defecation, increased the ammonia emission in the pig houses. The ammonia emission rate of sows was 1.87 times higher than fattening pigs. By monitoring the concentration of ammonia emission from fattened pigs and sows at different growth stages, we explored the characteristics of ammonia emission from large-scale pig farms, discriminated and analyzed the important influencing factors of ammonia emission, and discussed the contribution of fattened pigs and sows of different types to ammonia emission during growth stages to provide technical support for the accounting of ammonia emission in regional livestock and poultry breeding. These findings in this paper could be useful for estimation of ammonia emissions accurately and implementation of ammonia emission reduction measures in China.

ammonia; emission control; pollution; industrial pig farm; manure cleaning by rising water

2018-03-19

2018-07-03

大气重污染成因与治理攻关项目(DQGG0208);环保公益性行业科研专项(201509038);环境保护部部门预算项目“畜禽养殖大气氨排放污染控制工作指南”;江苏省大学生创新训练计划项目(201710304035Z、201710304078Y)联合资助

王文林,副研究员,博士,主要研究方向为流域面源污染控制。Email:wangwenlin_jjl@126.cn

刘 波,副教授,博士,主要从事环境面源污染过程与防治研究。Email:lb@ntu.edu.cn

10.11975/j.issn.1002-6819.2018.17.028

X552

A

1002-6819(2018)-17-0214-08

王文林,刘 筱,韩宇捷,杜 薇,刘 波,曾杰亮,童 仪,高 岩,关 雷,范军旗,李文静,何 斐. 规模化猪场机械通风水冲粪式栏舍夏季氨日排放特征[J]. 农业工程学报,2018,34(17):214-221. doi:10.11975/j.issn.1002-6819.2018.17.028 http://www.tcsae.org

Wang Wenlin, Liu Xiao, Han Yujie, Du Wei, Liu Bo, Zeng Jieliang, Tong Yi, Gao Yan, Guan Lei, Fan Junqi, Li Wenjing, He Fei. Daily emission characteristics of ammonia from typical industrial pig farm with manure cleaning by rising water in summer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(17): 214-221. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.17.028 http://www.tcsae.org

猜你喜欢
排放口栏舍肥猪
煤制油项目有组织排放口VOCs排放源强分析
简析V2500漏油检查和放行标准
规模化蛋鸡养殖场栏舍氨排放规律研究*
肉鸡饲养管理技术
排放标准变更对石化企业排污的影响
一个大,一个小
PK肥猪猫
唐人神:近期种猪销售订单供不应求
大型化学品船水下排放系统设计
温柔的狼