想象一下未来,父母可以定制宝宝的样子,选择未出世孩子的身高和眼睛颜色。所有特质都可以根据个人喜好定制:家养宠物的大小,植物的寿命等。这听起来像是反乌托邦科幻小说,但其实这并不是遥不可及。
2012年,科学家们首次发现CRISPR,并对CRISPR(也称为Cas9或CRISPR-Cas9)的应用感到惊讶。CRISPR可能会彻底改变我们应对一些问题的方法,如癌症,食物短缺和器官移植。在最近的报告中,CRISPR甚至可以被用作诊断疾病的工具。但是,与任何新技术一样,它也可能会导致意想不到的问题。
不断变化的DNA将不可避免地导致一系列难以预想的后果。社会和各行业如果不了解CRISPR的基础知识,就无法应用这项技术。接下来,让我们从其定义,应用和局限性深入了解CRISPR。
CRISPR是细菌遗传密码及其免疫系统的一个定义性特征,是细菌用来保护自己免受病毒攻击的防御系统。它也存在于古生物界(单细胞微生物)中的生物体中。首字母缩写词“CRISPR”——Clustered Regularly Interspaced Short Pal indromic Repeats。实质上,它是一系列重复的DNA序列,并且这些DNA之间存在“spacers”。
简而言之,细菌利用这些基因序列来“记住”攻击它们的每种病毒。
CRISPR将会影响的行业包括医药、食品、农业和工业生物技术。
细菌会将病毒的DNA整合到自己的细菌基因组中。这种病毒DNA最终成为CRISPR序列中的“spacers”。这种防御系统可以在同种病毒再次发起攻击时给予细菌保护或免疫力。
总是位于CRISPR附近的基因,称为Cas(CRISPR相关)基因。一旦激活,这些基因就会产生特殊的蛋白质,这些蛋白质是与CRISPR共同进化的酶。这些Cas酶能够充当切割DNA的“分子剪刀”。
回顾一下,实际上,当病毒侵入细菌时,其独特的DNA会被整合到细菌基因组中的CRISPR序列中。这意味着下一次病毒攻击时,细菌会记住它并发送RNA和Cas来定位和破坏病毒。
虽然细菌中还有其他Cas酶在病毒攻击自己时会截断病毒,但Cas9是动物体内执行这种任务的最佳酶。大众所熟知的术语CRISPR-Cas9是指切割动物(和人类)DNA的Cas酶的种类。
为了更好的应用这项技术,研究人员增加了一个新的步骤:在CRISPRCas9切割DNA后,携带“固定”基因的新DNA序列可以嵌入到新的间隔中。或者,切割可以同时“敲除”不需要的基因,例如,导致疾病的基因。
换个更加形象的说法,CRISPRCas9类似于Word中的“查找和替换”功能:CRISPR-Cas9想要查找并更正遗传数据(或“单词”),用新材料替换它。或者,正如CRISPR的先驱Jennifer Doudna在其A Crack In Creation:Gene Editing and the Unthinkable Power to Control Evolution一书中所提到的那样,CRISPR就像一把瑞士军刀,我们的使用方式不同,它发挥的功能也不同。
CRISPR研究的飞速发展,已经超越了基础DNA编辑。2017年12月,Salk研究所设计了CRISPR-Cas9系统的不成熟版本,能够在没有编辑基因组的情况下激活或关闭目标基因。展望未来,这种技术可以解决基因编辑永久性的问题。
每个行业都可以利用CRISPR:它可以为人类疾病创造新的药物,帮助农民种植抗病作物,创造新的动植物物种,甚至让灭绝的物种起死回生。
CRISPR研究的飞速发展,已经超越了基础DNA编辑。
自最初发现CRISPR以来,其应用的领域迅速扩大。虽然还处于早期阶段,但“动物模型”(即实验室动物)已经向我们展示了如何操纵CRISPR技术。
小鼠是研究CRISPR治疗潜力的实验对象。拥有超过人类90%的基因,小鼠是哺乳动物中理想的实验对象。小鼠实验表明,CRISPR可以消除与假肥大性肌营养不良(DMD)相关的缺陷基因,抑制神经性舞蹈病蛋白质的形成并消除HIV感染。
2015年,中国科学家通过去肌肉生长抑制素基因基因创造了两个超级肌肉小猎犬。在没有该基因的情况下,小猎犬表现出“肌肉肥大”,明显比未经基因改造的犬更强壮。
其他CRISPR动物试验包括将长绒山羊用于高产羊绒和繁殖无角奶牛。
与动物研究相比,编辑人类DNA的CRISPR实验发展较缓慢,主要是由于伦理和监管问题。鉴于改变人类基因组的永久性,FDA对于CRISPR的态度是谨慎的。一些科学家甚至提出应该暂停CRISPR试验,直到我们获得更多有关该技术对人类潜在影响的信息。
2018年,美国和欧洲进行了CRISPR人体试验。
截至2018年2月,宾夕法尼亚大学正在等待F D A对于一项研究的最终批准。该研究旨在评估应用CRISPR治疗多发性骨髓瘤,黑色素瘤和肉瘤患者的安全性。
欧洲也可能会在2018年首次进行人体CRISPR研究。CRISPR Therapeutics的研究集中在一种称为β-地中海贫血的血液疾病上,这种疾病会导致血红蛋白的成分改变。
虽然涉及患者参与的临床试验仍在等待监管机构的批准,但CRISPR已经应用于活体和非活体人类胚胎实验中。
例如,2017年8月,由俄勒冈州健康和科学大学的生殖生物学家Shoukhrat Mitalipov领导的一个小组获得了私人赞助,使用CRISPR-Cas9识别了导致心肌增厚的胚胎突变。突变的胚胎在实验室将突变率恢复到了72%(高于普通50%的遗传率)。
一些批评人士说,胚胎的基因编辑是不道德的,即使编辑过的胚胎不用于移植。目前这种类型的测试无法获得联邦资助,都是依靠私人赞助。
CRISPR将会影响的行业包括医药、食品、农业和工业生物技术。由于CRISPR-Cas9基因编辑系统非常容易建立和使用,各个领域的研究人员都可以利用这项技术。
未来的医学将用CRISPR编写。
目前的药物的研发需要花很长时间,因为需要确保药物的安全性,还需彻底了解药物的副作用。而且,目前的美国监管政策往往导致研发进程长达数十年。然而,应用CRISPR的团队可以将定制疗法更快地推向市场,加速了传统的药物研发过程。
CRISPR更加便宜和灵活,它能快速地识别潜在的目标基因,进行高效的临床前实验。因为它可以用来“敲除”不同的基因,CRISPR为研究人员提供了一种更快,更实惠地研究成千上万个基因的方式,方便查看哪些基因受特定疾病的影响。
当然,随着药物研发过程更加简便,CRISPR提供了治疗患者的新方法。
例如,单基因疾病-由单一基因突变引起的疾病—可以进行CRISPR试验。这些疾病的性质为治疗提供了确切的目标:单个基因的突变。
基于血液的单基因疾病如β-地中海贫血或镰状细胞也是CRISPR治疗的理想对象,因为这些疾病能够在体外进行治疗(称为离体治疗)。患者的血细胞可以被取出,用CRISPR技术治疗,然后放回到体内。
早在20世纪20年代,酸奶公司Danisco就开创了CRISPR的早期应用,当时科学家们使用早期版本的CRISPR来对抗牛奶和酸奶中的主要细菌(嗜热链球菌),该细菌总是被病毒感染。那时候,CRISPR技术仍不成熟。
由于气候变化的影响,我们急需使用CRISPR保护粮食和农产品免受新细菌的侵害。例如,随着种植区域变得越来越热和干燥,可可的种植变得越来越难。这种环境变化将进一步加剧病原体造成的损害。
为了解决这个问题,加州大学伯克利分校的创新基因组学研究所(IGI)正在应用CRISPR来制造抗病可可。领先的巧克力供应商MARS Inc.也在支持这项研究。
基因编辑可以使种植更加高效。它可以缓解马铃薯和西红柿等主要作物的全球粮食短缺,也可以创造出不受干旱和其他环境影响的作物。
监管机构对基因编辑作物几乎没有任何抵触情绪,美国农业部(USDA)也没有管理这一领域。这主要是因为当CRISPR应用于农作物时,不会带来任何外源DNA:CRISPR仅用于编辑作物自身的遗传信息,选择理想的性状。
2018年1月,某生物技术公司获得CRISPR植物亚麻籽油(假亚麻)的批准,该亚麻籽油增强了ω-3油,用于制造植物油和动物饲料。
这些迹象表明,新品种的农作物比以前想象的更快地进入市场。这会影响我们吃的食物,因为食物被编辑以后,有可能以携带更多的营养物质或可以在杂货架上保存更长时间。
另一个不太明显的领域是工业生物技术。使用CRISPR重新设计微生物,研究人员可以创建新材料。
这与整个社会有什么关系?从工业角度来看,这对改造和创造新的化学产品来说非常重要。我们可以改变微生物以增加多样性,创造新的生物材料,并制造更高效的生物燃料。从香水中的活性化学物质到工业洗洁精中的活性化学物质,CRISPR会对创造新的更高效的生物材料产生巨大影响。
当技术可以改变生命法则时,其影响是深远的,它的争议也是如此。下面将列出一些关于CRISPR的主要争议。
如果我们知道某个基因的位置在哪里,可以利用CRISPR以多种方式操纵它。按照这种逻辑,宠物主人可以用特定的毛色和尺寸设计他们想要的狗。更重要的是,父母还可以修改控制身高或眼睛颜色的基因来“设计”自己的孩子。如果我们能够分离出与智力相关的基因,那孩子的智商也可以被操纵。
虽然批评人士说这种技术只能用于治疗需求,但CRISPR的快速发展似乎不会减慢,基因编辑技术的已经被用于非治疗目的手术中。
最后一只长毛的猛犸象出现在3600年前。如果我们能够让这些古代生物起死回生,我们应该这么做吗?目的是什么?无论是出于好奇还是为了有效的科学实验,这个领域都颇具争议。
简而言之,灭绝物种复活是为了让灭绝的动物起死回生。首先我们需要找到灭绝动物最近的活体亲属的胚胎,并使用CRISPR-Cas9在其基因中插入已灭绝物种的DNA,这样一只已灭绝的动物可以再次漫游这个星球。
灭绝物种复活的倡导者们也表示,人类直接导致许多物种灭绝,因此,我们应该共同努力扭转这一趋势。
批评者担心,像这样操纵自然可能会带来更多的伤害而不是积极影响,可能会创造出威胁人类崛起或现在环境的物种。
利用CRISPR进行“生殖细胞改造”引发科学界的担忧。
改造体细胞,如皮肤,大脑,肌肉和心脏细胞不会传递给后代。然而,生殖细胞改造修改的是卵子或精子细胞中的基因,因此这样的改造将遗传给后代。
生殖细胞改造引发了一个问题:从道德层面上,我们是否可以选择我们想要遗传给后代的基因?
尽管围绕这个问题存在争议,但显然,改造生殖细胞的好处是可以阻止或防止疾病表现为个体发育。生殖细胞疗法也可以保证患者体内的每个细胞都接受治疗。即使一个成年人天生就是易得癌症的体质,通过CRISPR编辑生殖细胞基因,他也可以痊愈,就像从没从未患过癌症一样。
一个没有蚊子的未来也是一个没有疟疾的未来,也就不会有寨卡病毒,基孔肯雅病毒,登革热这些名词地不断涌现。没有这些昆虫传播疾病,世界各地的生命将不会受到这些疾病的威胁。
CRISPR可以帮助我们到达这个目的。然而从进化的角度来讲,一个好主意可能会导致灾难性的后果。一般来说,每个基因有50%的机会被遗传给后代。但基因驱动却可以用来确保某种基因有更大的遗传几率。如果科学家通过遗传编辑技术改变基因驱动,他们则可以为进化创造一个加速通道。
但在短期看来,这样一个好办法会破坏野生生态系统的自然平衡,改变自然进化的过程。通过生态系统造成的多米诺骨牌效应是无法预测的。
基因编辑的未来在100、50甚至10年后可能发生翻天覆地的变化。
未来,在植物,动物甚至人类中修改或设计基因可能会合法,这也将给基因库和进化过程造成不可逆转的影响。
虽然上面提出的一些想法在目前看来似乎很牵强,但这的确很有可能发生。毕竟,CRISPR不是一种昂贵和难以获得的技术。CRISPR技术现在可以使用,很多人也正在使用这项技术。从农民到研究人员,CRISPR将对我们的社会产生不可估量影响。