朱晓培 简文杰 侯梦然
摘要[目的]建立非对称场流分离检测鲍内脏多糖的方法。[方法]采用非对称场流分离系统与静态光散射、光电二极管阵列和示差折光检测器联用技术分离表征鲍内脏多糖。以0.05 mol/L NaNO3 [含0.02%(W/V)NaN3] 为流动相,研究横向流速和样品浓度对非对称场流分离多糖的影响,并利用动静态光散射测量鲍内脏多糖的分子特性(分子量、均方根旋转半径、分子构象、流体力学半径)。[结果]不同横向流速对多糖的分离表征有显著影响;一定范围内,不同多糖浓度对分离效果及分子特性结果无显著差异。鲍内脏多糖分子量为(25.40±1.78)kD,均方根旋转半径为(16.70±0.30)nm,流体力学半径为(143.23±15.49)nm,分子为无规则线团构象。[结论]非对称场流技术适用于鲍内脏多糖的分离检测。
关键词非对称场流;鲍内脏多糖;分离表征;动静态光散射
中图分类号S917文献标识码A文章编号0517-6611(2018)28-0164-03
Detection of Polysaccharide from Abalone Viscera by Asymmetrical Flow FieldFlow Fractionation
ZHU Xiaopei1,2,JIAN Wenjie2,HOU Mengran1 et al
(1. Fisheries College of Jimei University,Xiamen,Fujian 361021;2.Nutrition and Food Safety Research Office of Xiamen Medical College,Xiamen,Fujian 361021)
Abstract[Objective] To establish an asymmetric flow fieldflow fractionation (AF4) method for the detection of polysaccharide from abalone viscera (AV). [Method]AF4 technique was used to isolate polysaccharide from AV coupled with static light scattering device, photodiode array and differential refractive index detector. The effect of varying the cross flow and sample concentration on AF4 had been studied where 0.05 mol/L NaNO3 and 0.02%(W/V) NaN3 aqueous solution as carrier phase. The molecular characteristics (weightaverage molar mass (Mw), root mean square radius (RMS), molecular conformation, hydrodynamic radius) of polysaccharide from AV were measured by dynamic and static light scattering. [Result]The different cross flow had a significant effect on the determination of polysaccharide separation. Within a certain range, there was no significant difference in the separation effect and molecular property results between different polysaccharide concentrations.The Mw, RMS and hydrodynamic radius of polysaccharide from AV were (25.40±1.78) kDa, (16.70 ±0.30) nm and (143.23±15.49) nm, respectively. And the molecular conformation was random coil. [Conclusion] The AF4 is suitable for the separation and detection of polysaccharide from abalone viscera.
Key wordsAsymmetrical flow fieldflow fractionation;Polysaccharide from abalone viscera;Separation and characterization;Dynamic and static light scattering
基金項目国家海洋局海洋公益性行业科研专项(201405016);福建省高等学校新世纪优秀人才支持计划项目(20170008);福建省自然科学基金项目(2017D0009);福建省科技引导性项目(2016N0022)。
非对称场流分离技术(asymmetrical flow field flow fractionation,AF4)是用于颗粒分离及表征的技术[1],是一种基于流动的分离方法,结合了色谱和场驱动技术的基本要素,样本在外加垂直于层流方向的场力作用下,不同尺寸的被分离物层流层与通道壁的距离不同,具有不同的淋洗速度而达到分离的目的[2]。AF4无需固定相和填充物,具有较低的压力和剪切力,有助于保护脆弱的团粒结构,减少大分子降解[3-4],最大限度地保护样品的结构稳定性[5],可快速高分辨率地分离1 nm~100 μm的样品。由于AF4技术分离条件温和且表征范围广,因此被广泛应用于牛血清蛋白[6]、透明质酸[7]、淀粉[8]、脂蛋白[9]和脂质体[10]等生物颗粒和生物分子的分离检测。在生物分析领域具有巨大的应用潜力[11]。
3结论
通过非对称场流分离系统与静态光散射、光电二极管阵列和示差折光检测器联用技术分离表征鲍内脏多糖,发现其分子量为(25.40±1.78)kD,均方根旋转半径为(16.70±0.30)nm,流体力学半径为(143.23±15.49)nm,分子为无规则线团构象,与前期采用GPC-MALLS分离表征鲍内脏多糖结果相似[20],样品处理与操作过程简便,分离条件更加温和且用时短。因此,AF4适用于鲍内脏多糖的分离检测。
参考文献
[1] KIM B,WOO S,PARK Y S,et al.Ionic strength effect on molecular structure of hyaluronic acid investigated by flow fieldflow fractionation and multiangle light scattering[J].Analytical and bioanalytical chemistry,2015,407(5):1327-1334.
[2] 张学军.场流分离技术及应用研究[D].长春:吉林大学,2007.
[3] BOLINSSON H,LU Y,HALL S,et al.An alternative method for calibration of flow field flow fractionation channels for hydrodynamic radius determination:The nanoemulsion method(featuring multi angle light scattering)[J].Journal of chromatography A,2018,1533:155-163.
[4] TGEL I,RUNYON J R,GALINDO F G,et al.Analysis of polysaccharide and proteinaceous macromolecules in beer using asymmetrical flow fieldflow fractionation[J].Journal of the institute of brewing,2015,121(1):44-48.
[5] 鄂云龙.非对称流场流分离技术联用质谱对蛋白分子的分离表征[D].北京:北京化工大学,2015.
[6] YOHANNES G,WIEDMER S K,ELOMAA M,et al.Thermal aggregation of bovine serum albumin studied by asymmetrical flow fieldflow fractionation[J].Anal Chim Acta,2010,675(2):191-198.
[7] KIM B,WOO S,PARK Y S,et al.Ionic strength effect on molecular structure of hyaluronic acid investigated by flow fieldflow fractionation and multiangle light scattering[J].Anal Bioanal Chem,2015,407(5):1327-1334.
[8] BOWEN S E,GRAY D A,GIRAUD C,et al.Lipid oxidation and amylopectin molecular weight changes occurring during storage of extruded starch samples[J].Journal of cereal science,2006,43(3):275-283.
[9] 王静,张潇月,张竞文,等.基于场流分离技术分离表征血清中的脂蛋白[J].河北大学学报(自然科学版),2017,37(2):128-133.
[10] RAMBALDI D C,ZATTONI A,RESCHIGLIAN P,et al.In vitro amyloid Aβ1-42 peptide aggregation monitoring by asymmetrical flow fieldflow fractionation with multiangle light scattering detection[J].Anal Bioanal Chem,2009,394(8):2145-2149.
[11] 梁启慧,吴迪,邱百灵,等.非对称流场流分离技术的现状及发展趋势[J].色谱,2017,35(9):918-926.
[12] ZHOU D Y,ZHU B W,QIAO L,et al.In vitro antioxidant activity of enzymatic hydrolysates prepared from abalone(Haliotis discus hannai Ino)viscera[J].Food and bioproducts processing,2012,90(2):148-154.
[13] RODA B,ZATTONI A,RESCHIGLIAN P,et al.Fieldflow fractionation in bioanalysis:A review of recent trends[J].Analytica chimica acta,2009,635(2):132-143.
[14] 王姣,魏好程,何传波,等.鲍内脏多糖的抗氧化活性[J].食品科学,2017,38(15):115-121.
[15] 鄂云龙,全灿,金君素,等.基于非对称流场流分离技术的蛋白分离研究[J].北京化工大学学报(自然科学版),2015,42(2):30-34.
[16] JIAN W J,WU H Y,WU L L,et al.Effect of molecular characteristics of Konjac glucomannan on gelling and rheological properties of Tilapia myofibrillar protein[J].Carbohydr Polym,2016,150:21-31.
[17] LOHRKE J,BRIEL A,MEDER K.Characterization of superparamagnetic iron oxide nanoparticles by asymmetrical flowfieldflowfractionation[J].Nanomedicine,2008,3(4):437-452.
[18] LIU M K,LI P,GIDDINGS J C.Rapid protein separation and diffusion coefficient measurement by frit inlet flow fieldflow fractionation[J].Protein science,1993,3(9):1520-1531.
[19] 劉攀攀,全灿,李红梅,等.非对称场流分离技术用于纳米颗粒的表征[J].分析化学,2013,41(7):1063-1068.
[20] 王姣.鲍内脏多糖的分离纯化及抗氧化活性研究[D].厦门:集美大学,2016.