高长海,张新征,王兴谋,张云银,李豫源
(1.中国石油大学(华东) 地球科学与技术学院,山东 青岛 266580; 2.中石化胜利石油工程有限公司地质录井公司,山东 东营 257064; 3.中国石化胜利油田分公司物探研究院,山东 东营 257022)
稠油作为非常规油气资源,其资源量远大于常规油气资源[1-2],具有广阔的勘探潜力。稠油可分为原生型稠油和次生型稠油,前者是指由未成熟或低成熟烃源岩生成的未经后期改造的原油[3-5],后者则是指正常原油后期经生物降解、水洗、氧化、脱沥青等作用改造而成的原油[6-8]。稠油的资源量主要来自于次生型稠油的贡献,国内外学者对次生型稠油的研究取得了大量成果和认识[9-14]。中国已在渤海湾盆地济阳坳陷[15-16]、辽河盆地西部凹陷[17-18]、准噶尔盆地吉木萨尔凹陷[19]、二连盆地白音查干凹陷[20]、银根—额济纳旗盆地查干凹陷[1]以及赤峰盆地元宝山凹陷[21]等发现了大量规模可观的原生型稠油,但目前对该类稠油的研究仍相对较薄弱。因此,研究原生型稠油的地球化学特征及其成因机制,对稠油勘探开发方案的制定具有重要意义。
三合村洼陷是渤海湾盆地济阳坳陷沾化凹陷典型的稠油发育区,自古近系至新近系均有分布,截至目前,上报稠油控制储量为3 200×104t(古近系占74%,新近系占26%),且规模仍在扩大,展现了良好的勘探潜力。前人对三合村洼陷构造演化、沉积特征以及油气成藏等方面已进行过相关研究和报道[22-27],但对该区油气的成因机制尤其是古近系稠油的成因机制仍存在争议,主要有以下观点[28-30]:①古近系稠油是成熟油生物降解作用的结果;②古近系稠油是低熟油生物降解作用的结果;③古近系稠油是低熟油原生蚀变作用(水洗作用、氧化作用、热化学硫酸盐还原作用(TSR)等)的结果,无或轻生物降解作用。本文通过原油物性、族组成、生物标志化合物等分析,阐述了三合村洼陷古近系稠油的地球化学特征,并对其成因机制进行了探讨,以期为该地区基础地质研究和油气勘探开发提供理论指导。
三合村洼陷位于济阳坳陷沾化凹陷南部,西北以垦西断层与渤南洼陷相接,东北临孤南洼陷,东临富林洼陷,南以斜坡带向陈家庄凸起过渡,是一个夹持在渤南洼陷和陈家庄凸起之间的北断南超箕状洼陷,勘探面积约为200 km2(图1)。三合村洼陷主要经历了3个演化阶段,即古近纪沙三段强烈断陷阶段、沙一段—东营组断坳转换阶段以及新近纪以来坳陷阶段,相继沉积了古近系沙三段、沙一段和东营组,新近系馆陶组和明化镇组以及第四系平原组(图2)。目前,三合村洼陷共钻井30余口,先后发现了古近系沙河街组、东营组以及新近系馆陶组、明化镇组等含油气层系,其中古近系发育特稠油油藏,新近系发育稠油油藏及天然气藏,从而形成了以大范围分布的稠—特稠油油藏为基本特征的“下油上气”、“下稠上稀”的复式油气聚集带。
图1 济阳坳陷三合村洼陷构造位置Fig.1 Structural Location of Sanhecun Sag of Jiyang Depression
图2 三合村洼陷古近系地层柱状图Fig.2 Paleogene Stratigraphic Column of Sanhecun Sag
本次研究共采集了9口采样井的稠油样品(采样井位置见图1),包括古近系沙三段15个样品(来自5口井,埋深为2 085~2 573 m)和新近系馆陶组27个样品(来自6口井,埋深为1 324~1 646 m)。三合村洼陷古近系沙三段稠油的密度为1.019 2~1.124 8 g·cm-3(平均为1.062 4 g·cm-3),黏度为2 594~95 280 mPa·s(平均为27 255 mPa·s),硫含量(质量分数,下同)为6.79%~11.03%(平均为9.32%),蜡含量为0.77%~10.61%(平均为7.28%),属于特稠油范畴[图3(a)];原油族组成饱和烃含量为6.81%~13.87%,芳烃含量为31.39%~42.55%,非烃+沥青质含量为47.84%~56.30%[图3(b)]。相比新近系稠油,古近系稠油具有高密度、高黏度、高硫含量,以及低饱和烃、高芳烃、高非烃+沥青质和低饱芳比的特征(图3)。
古近系稠油的饱和烃总离子流图(图4)基线出现不同程度的抬升,表明原油遭受了次生蚀变作用,但蚀变程度远低于新近系稠油。原油正、异构烷烃保存较完整,仅部分遭受损失(缺失C1~C8),姥鲛烷(Pr)含量低,而植烷(Ph)含量高,具明显植烷优势,Pr/Ph值多在0.20左右,反映古近系稠油主要来自咸化—半咸化湖相环境。
古近系稠油的甾烷类化合物由孕甾烷、重排甾烷、规则甾烷和甲基甾烷等系列组成(图5)。原油规则甾烷分布较完整,各谱图未见明显变形,具有相似的指纹特征,ααα20RC27、ααα20RC28、ααα20RC29均呈近“V”型分布,表明原油具有相似的成因类型;原油孕甾烷、重排甾烷含量普遍较高,与正常原油相当,C29重排甾烷/C29规则甾烷值一般小于0.40,表明其抗生物降解能力强于规则甾烷。
图3 三合村洼陷稠油物性及族组成特征Fig.3 Physical Properties and Group Compositions of Heavy Oils in Sanhecun Sag
Ng为新近系馆陶组;Es3为古近系沙三段;E为古近系沙四段上亚段图4 三合村洼陷稠油饱和烃总离子流图Fig.4 Saturated Hydrocarbon Total Ion Chromatogams of Heavy Oils in Sanhecun Sag
图5 三合村洼陷稠油质荷比为217的质量色谱Fig.5 Mass Chromatograms of Heavy Oils with m/z of 217 in Sanhecun Sag
图6 三合村洼陷稠油质荷比为191的质量色谱Fig.6 Mass Chromatograms of Heavy Oils with m/z of 191 in Sanhecun Sag
古近系稠油的萜烷类化合物具有相似的指纹特征,由倍半萜烷、三环萜烷、四环萜烷、五环三萜烷等组成,且以三环萜烷、五环三萜烷为主(图6)。原油Ts丰度明显低于Tm;伽马蜡烷含量普遍较高,伽马蜡烷/C30藿烷值为0.105~0.180,反映古近系稠油主要来自偏咸化、还原性环境烃源岩;原油中未检测出25-降藿烷系列,表明古近系油藏的保存条件较好。因此,古近系稠油仅遭受轻微程度(2、3级)的生物降解作用[30],并不是特稠油形成的主要机制。
济阳坳陷三合村洼陷古近系稠油的形成存在油源问题和成因问题两方面的争议[30-32],前者有成熟油与低熟油之争,后者有原生与次生之争。要明确稠油的成因机制,应从“源”到“藏”的整个过程开展地质、地球化学的综合分析。
三合村洼陷自身不具备生油条件[33],因此,其油源只可能来自周边的生油洼陷(图1)。三合村洼陷古近系稠油伽马蜡烷指数普遍大于0.55,Ts/Tm值小于0.10,C35升霍烷含量大于C34升霍烷(C35升藿烷指数大于2.50),具有明显的翘尾特征,与渤南洼陷沙四段烃源岩的原油特征相似;而新近系稠油伽马蜡烷指数一般小于0.20,Ts/Tm值大于0.30,C35升霍烷含量小于C34升霍烷(C35升藿烷指数小于1.50),与渤南洼陷沙三段和沙四段混源的原油特征相似(图4~7)。因此,古近系油源来自于渤南洼陷沙四段烃源岩,而新近系油源来自于渤南洼陷沙四段与沙三段烃源岩的混源。
图7 三合村洼陷油源对比Fig.7 Oil-source Correlations in Sanhecun Sag
MDR值表示4-MDBT/1-MDBT值;Rc=0.6IMP1+0.4,IMP1为甲基菲指数图8 渤南洼陷与三合村洼陷稠油成熟度关系Fig.8 Relationships of Maturities of Heavy Oils Between Bonan Sag and Sanhecun Sag
渤南洼陷沙四段烃源岩为具咸水、强还原环境的膏盐湖相沉积[34-35]。王秀红等依据C29甾烷异构化参数对其原油成熟度进行了评价,认为该原油属于成熟油[23]。三合村洼陷古近系稠油的C29甾烷20S/(20S+20R)值为0.445~0.518,C29甾烷αββ/(αββ+ααα)值为0.457~0.473,不仅高于新近系稠油[图7(c)],也高于一般低熟油,表现出成熟油特征,但其原油地球化学特征又明显与成熟油特征不同,仍具有盐湖环境低熟油普遍的地球化学特征,因此,仅仅采用C29甾烷异构化参数评价原油成熟度可能有失偏颇。本文选用抗降解能力强的三降藿烷及芳烃类化合物等参数进行原油成熟度的综合分析。古近系稠油的Ts/(Ts+Tm)值为0.065~0.094,新近系稠油的Ts/(Ts+Tm)值为0.358~0.396;古近系稠油的MDR值(根据甲基二苯并噻吩(MDBT)计算的成熟度参数值)为0.577~0.758,新近系稠油的MDR值为1.732~1.949[图8(a)];古近系稠油的Rc值(根据甲基菲指数计算得到的镜质体反射率)为0.674%~0.729%,对应的Ro值(实测的镜质体反射率)小于0.60%,新近系稠油的Rc值为0.669%~0.849%,对应的Ro值大于0.80%[图8(b)]。由此可见,古近系稠油成熟度明显低于新近系稠油,其表现出较高的C29甾烷异构化参数比值,可能与其生烃母质类型及有机质成熟演化有关[29,35-36]。渤南洼陷沙四段烃源岩的生源构成以藻类为主(体积分数高于75%),藻类可溶有机质的低温热降解生烃对低熟油的形成具有重要贡献;沙四段烃源岩高含硫环境造成富硫大分子中S—S键和S—C键平均键能较低,而C—C键平均键能高,含硫有机大分子中的S—S键和S—C键可以在早期低温热降解阶段断裂而形成低熟油;沙四段烃源岩富含方解石、白云石等碳酸盐矿物(体积分数大于60%),这类矿物在低温条件下催化脱羧生烃活性增加,对有机质早期成熟转化以及烃类生成具有重要作用,这些机制促使低成熟演化阶段烃源岩生成低熟油。葛海霞等研究认为,泥页岩与蒸发岩共生的咸化还原环境有助于形成低熟油[37-39]。渤南洼陷沙四段原油样品的芳烃馏分检测出丰富的烷基苯系列、烷基萘系列、菲系列、脱羟基维生素E、芳构化甾烷及多种含硫芳烃化合物[29],表明渤南洼陷沙四段高含硫原油不仅来自咸水环境,而且成熟度较低,属于非干酪根热降解成因的低熟油。与渤南洼陷沙四段原油相比,三合村洼陷古近系稠油表现为特稠油特征,且原油正构烷烃及类异戊二烯烷烃等出现不同程度的损失(图4~6),表明古近系稠油遭受了后期蚀变作用。
从油气成藏过程来看,古近系东营组沉积末期,渤南洼陷沙四段烃源岩开始进入排烃期(Ro值为0.50%~0.60%)[23,29],垦西断层尚未断开古近系底部发育的大套扇三角洲砂体,原油沿古近系与前第三系之间的不整合输导层侧向运移至三合村洼陷,并在古近系沙三段地层超覆圈闭中聚集成藏(稠油的异胆甾烷αββ20RC29/ααα20RC29值小于0.55,属于近距离运聚成藏,因此,不存在运移过程中轻质组分散失的基础)(图9)。综上所述,三合村洼陷古近系低熟油为渤南洼陷咸水还原环境的沙四段烃源岩低成熟阶段生成的原油。
Ed为古近系东营组;Es1为古近系沙一段;Es4为古近系沙四段图9 三合村洼陷东营组沉积末期油气成藏过程Fig.9 Hydrocarbon Accumulation Process at the end of Dongying Period in Sanhecun Sag
低熟油通常只能形成普通稠油[40],而三合村洼陷古近系稠油属于特稠油,其饱和烃色谱特征显示稠油仅发生轻微降解,说明特稠油的形成并不完全是由生物降解作用所致。研究表明,硫酸盐还原作用是三合村洼陷古近系稠油形成的另一重要因素。
H2S(HS-)+热量±H2O
图10 渤南洼陷原油密度与浓度关系Fig.10 Relationship Between Density of Oils and Concentration of in Bonan Sag
(1)济阳坳陷三合村洼陷古近系稠油属于特稠油范畴,具有高密度、高黏度、高硫含量,以及低饱和烃、高芳烃、高非烃+沥青质和低饱芳比的特征。
(2)三合村洼陷古近系稠油正、异构烷烃保存较完整,仅部分遭受损失,孕甾烷、重排甾烷、伽马蜡烷含量普遍较高,未检测出25-降藿烷系列,表明原油仅遭受轻微程度的生物降解作用。
(3)三合村洼陷古近系稠油来自渤南洼陷沙四段膏盐湖相烃源岩,藻类可溶有机质早期生烃、富硫大分子早期热降解生烃及碳酸盐岩对有机质低温热催化早期生烃等是低熟油形成的主要机制。
(4)三合村洼陷古近系稠油为低熟油经热化学硫酸盐还原作用和生物降解作用稠变而成,属于原生蚀变型稠油。
参考文献:
[1] 王 朋,柳广弟,曹 喆,等.查干凹陷下白垩统稠油地球化学特征及成因分析[J].沉积学报,2015,33(6):1265-1274.
WANG Peng,LIU Guang-di,CAO Zhe,et al.Geochemistry and Origin of Heavy Oil in Lower Cretaceous of Chagan Depression[J].Acta Sedimentologica Sinica,2015,33(6):1265-1274.
[2] 胡守志,张冬梅,唐 静,等.稠油成因研究综述[J].地质科技情报,2009,28(2):94-97.
HU Shou-zhi,ZHANG Dong-mei,TANG Jing,et al.Review of the Genesis of Heavy Oil[J].Geological Science and Technology Information,2009,28(2):94-97.
[3] 牛嘉玉,洪 峰.我国非常规油气资源的勘探远景[J].石油勘探与开发,2002,29(5):5-7.
NIU Jia-yu,HONG Feng.Exploratory Prospects of Unconventional Oil-gas Resources in China[J].Petroleum Exploration and Development,2002,29(5):5-7.
[4] 朱芳冰,肖伶俐.降解混合型稠油物化性质研究[J].断块油气田,2004,11(1):37-39.
ZHU Fang-bing,XIAO Ling-li.Physics-chemical Property Research of Mixed-heavy Oil with Biodegradation[J].Fault-block Oil and Gas Field,2004,11(1):37-39.
[5] 李倩倩,刘 鹏.渤南洼陷罗家垦西地区沙三段稠油的形成与分布[J].西安石油大学学报:自然科学版,2017,32(4):39-45.
LI Qian-qian,LIU Peng.Formation and Distribution of Heavy Oil of the Third Member of Shahejie Formation in Luojiakenxi Area of Bonan Sag[J].Journal of Xi’an Shiyou University:Natural Science Edition,2017,32(4):39-45.
[6] CONNAN J.Biodegradation of Crude Oils in Reservoirs[J].Advances in Petroleum Geochemistry,1984,1:299-335.
[7] 袁清秋.辽河盆地西部凹陷稠油形成条件分析[J].特种油气藏,2004,11(1):31-33.
YUAN Qing-qiu.Analysis of Heavy Oil Genetic Conditions in the Western Sag of Liaohe Basin[J].Special Oil and Gas Reservoirs,2004,11(1):31-33.
[8] 陈建平,王兴谋,高长海,等.东营凹陷林樊家地区稠油特征及成因机制[J].特种油气藏,2016,23(5):8-11.
CHEN Jian-ping,WANG Xing-mou,GAO Chang-hai,et al.Heavy-oil Properties and Genetic Mechanisms in Linfanjia of Dongying Depression[J].Special Oil and Gas Reservoirs,2016,23(5):8-11.
[9] LARTER S,WILHELMS A,HEAD I,et al.The Controls on the Composition of Biodegraded Oils in the Deep Subsurface,Part 1:Biodegradation Rates in Petroleum Reservoirs[J].Organic Geochemistry,2003,34(4):601-613.
[10] 胡见义,牛嘉玉.中国重油沥青资源的形成与分布[J].石油与天然气地质,1994,15(2):105-112.
HU Jian-yi,NIU Jia-yu.Formation and Distribution of Heavy Oil Bitumen Resources in China[J].Oil and Gas Geology,1994,15(2):105-112.
[11] HEAD I,JONES D M,LARTER S R.Biological Activity in the Deep Subsurface and the Origin of Heavy Oil[J].Nature,2003,426:344-352.
[12] 张枝焕,刘洪军,李 伟,等.准噶尔盆地车排子地区稠油成因及成藏过程[J].地球科学与环境学报,2014,36(2):18-32.
ZHANG Zhi-huan,LIU Hong-jun,LI Wei,et al.Origin and Accumlation Process of Heavy Oil in Chepaizi Area of Junggar Basin[J].Journal of Earth Sciences and Environment,2014,36(2):18-32.
[13] 李守军,刘 晓,王延章,等.哈山地区稠油特征及成因分析[J].特种油气藏,2016,23(4):29-32,152.
LI Shou-jun,LIU Xiao,WANG Yan-zhang,et al.Heavy-oil Properties and Genesis in Hashan[J].Special Oil and Gas Reservoirs,2016,23(4):29-32,152.
[14] 林军章,冯 云,谭晓明,等.生物成因稠油与伴生气形成过程模拟研究:以林樊家地区浅层气和稠油为例[J].油气地质与采收率,2017,24(2):85-89.
LIN Jun-zhang,FENG Yun,TAN Xiao-ming,et al.A Simulation Experiment of Formation of Biodegraded Heavy Oil and Associated Gas:A Case of Shallow Gas and Heavy Oil in Linfanjia Area[J].Petroleum Geology and Recovery Efficiency,2017,24(2):85-89.
[15] 刘 华,蒋有录,龚永杰,等.东营凹陷新立村油田稠油成因[J].新疆石油地质,2008,29(2):179-181.
LIU Hua,JIANG You-lu,GONG Yong-jie,et al.Origin of Heavy Oils in Xinlicun Oilfield,Dongying Sag[J].Xinjiang Petroleum Geology,2008,29(2):179-181.
[16] 耿 斌,蔡进功,王端平,等.疏松砂岩稠油层油水赋存特征及识别:以济阳坳陷沾化凹陷馆下段稠油油藏为例[J].中国矿业大学学报,2017,46(5):1126-1133.
GENG Bin,CAI Jin-gong,WANG Duan-ping,et al.Characteristics and Recognition of Existing States of Oil and Water in Unconsolidated Sandstone Heavy Oil Layer:A Case Study of the Heavy Oil Reservoir of Guantao Formation in Zhanhua Sag of Jiyang Depre-ssion[J].Journal of China University of Mining and Technology,2017,46(5):1126-1133.
[17] 朱芳冰,肖伶俐,唐小云.辽河盆地西部凹陷稠油成因类型及其油源分析[J].地质科技情报,2004,23(4):55-58.
ZHU Fang-bing,XIAO Ling-li,TANG Xiao-yun.Heavy Oil Genetic Types and Oil-source Correlation in Western Depression,Liaohe Basin[J].Geological Science and Technology Information,2004,23(4):55-58.
[18] 徐长贵,王冰洁,王飞龙,等.辽东湾坳陷新近系特稠油成藏模式与成藏过程:以旅大5-2北油田为例[J].石油学报,2016,37(5):599-609.
XU Chang-gui,WANG Bing-jie,WANG Fei-long,et al.Neogene Extra Heavy Oil Accumulation Model and Process in Liaodong Bay Depression:A Case Study of Luda 5-2 N Oilfield[J].Acta Petrolei Sinica,2016,37(5):599-609.
[19] 王屿涛.新疆吉木萨尔凹陷低成熟稠油地球化学特征及含油远景[J].石油实验地质,1993,15(4):385-393.
WANG Yu-tao.Geochemical Characteristics of Low-maturity Crude Oil in the Xinjiang Jimsar Depression and Its Petroliferous Potential[J].Experimental Petroleum Geology,1993,15(4):385-393.
[20] 谈玉明,冯建辉,靳广兴,等.白音查干凹陷达尔其油田稠油地球化学与物性特征[J].地球化学,2003,32(3):271-281.
TAN Yu-ming,FENG Jian-hui,JIN Guang-xing,et al.Geochemical Characteristics and Physical Features of Da’erqi Oilfield,Baiyinchagan Depression[J].Geochimica,2003,32(3):271-281.
[21] 刘长伟,王飞宇,王铁冠,等.赤峰盆地元宝山凹陷稠油地球化学特征及成因[J].地球化学,2001,30(4):375-382.
LIU Chang-wei,WANG Fei-yu,WANG Tie-guan,et al.Geochemical Characteristics and Genesis of Viscous Crude Oil from Yuanbaoshan Depression,Chifeng Basin[J].Geochimica,2001,30(4):375-382.
[22] 方旭庆.济阳坳陷三合村洼陷油气运移与聚集规律[J].西安石油大学学报:自然科学版,2015,30(3):36-40.
FANG Xu-qing.Hydrocarbon Migration and Accumulation Patterns in Sanhecun Sag of Jiyang Depression[J].Journal of Xi’an Shiyou University:Natural Science Edition,2015,30(3):36-40.
[23] 王秀红,张守春,李 政,等.沾化凹陷三合村地区油气来源及运移方向[J].油气地质与采收率,2015,22(1):47-51.
WANG Xiu-hong,ZHANG Shou-chun,LI Zheng,et al.Study on Hydrocarbon Sources and Migration Pathways in Sanhecun Area of Zhanhua Sag[J].Petroleum Geology and Recovery Efficiency,2015,22(1):47-51.
[24] 王云鹤,刘强虎,朱筱敏,等.沾化凹陷三合村洼陷古近系沙三下亚段物源体系分析[J].高校地质学报,2015,21(3):426-439.
WANG Yun-he,LIU Qiang-hu,ZHU Xiao-min,et al.Provenance Analyses of the Lower Third Member of the Paleogene Shahejie Formation in Sanhecun Sub-sag,Zhanhua Sag[J].Geological Journal of China Universities,2015,21(3):426-439.
[25] 孟 涛,邱隆伟,王永诗,等.渤海湾盆地济阳坳陷三合村洼陷油气成藏研究[J].石油实验地质,2017,39(5):603-609.
MENG Tao,QIU Long-wei,WANG Yong-shi,et al.Hydrocarbon Accumulation in Sanhecun Sag,Jiyang Depression,Bohai Bay Basin[J].Petroleum Geology Experiment,2017,39(5):603-609.
[26] 刘 鹏.渤南洼陷古近系早期成藏作用再认识及其地质意义[J].沉积学报,2017,35(1):173-181.
LIU Peng.Geological Significance of Re-recognition on Early Reservoir Forming of Paleogene in Bonan Sag[J].Acta Sedimentologica Sinica,2017,35(1):173-181.
[27] 张 波.济阳坳陷三合村油田沙三下亚段油气成藏机理[J].新疆石油地质,2017,38(1):22-26.
ZHANG Bo.Hydrocarbon Accumulation Mechanism of Lower Es3in Sanhecun Oilfield, Jiyang Depression[J].Xinjiang Petroleum Geology,2017,38(1):22-26.
[28] 张 波,吴智平,王永诗,等.沾化凹陷三合村洼陷油气多期成藏过程研究[J].中国石油大学学报:自然科学版,2017,41(2):39-48.
ZHANG Bo,WU Zhi-ping,WANG Yong-shi,et al.Study on Multi-period Hydrocarbon Accumulation Process in Sanhecun Subsag of Zhanhua Sag[J].Journal of China University of Petroleum:Natural Science Edition,2017,41(2):39-48.
[29] 宋一涛,廖永胜,王 忠.济阳坳陷盐湖沉积环境高硫稠油的特征及成因[J].石油学报,2007,28(6):52-58.
SONG Yi-tao,LIAO Yong-sheng,WANG Zhong.Genesis and Characteristics of Sulfur-rich Heavy Oil in Salt Lake Depositional Environment of Jiyang Depression[J].Acta Petrolei Sinica,2007,28(6):52-58.
[30] 李豫源,查 明,高长海,等.济阳坳陷三合村洼陷浅层天然气成因分析[J].中国矿业大学学报,2017,46(2):388-396.
LI Yu-yuan,ZHA Ming,GAO Chang-hai,et al.The Origin of Shallow-buried Natural Gas in Sanhecun Sag,Jiyang Depression[J].Journal of China University of Mining and Technology,2017,46(2):388-396.
[31] 高树新,任怀强,杨少春.渤海湾盆地济阳坳陷陈家庄凸起东段北斜坡油源特征及成藏分析[J].石油实验地质,2007,29(1):69-73.
GAO Shu-xin,REN Huai-qiang,YANG Shao-chun.Oil-source Correlation and Reservoir Analysis in the Northern Slope of the Eastern Chenjiazhuang Uplift,the Jiyang Depression,the Bohai Bay Basin[J].Petroleum Geology and Experiment,2007,29(1):69-73.
[32] 卢 浩,蒋有录,刘 华,等.沾化凹陷渤南洼陷油气成藏期分析[J].油气地质与采收率,2012,19(2):5-8.
LU Hao,JIANG You-lu,LIU Hua,et al.Study on Formation Stages of Oil-gas Reservoirs in Bonan Subsag,Zhanhua Sag[J].Petroleum Geology and Recovery Efficiency,2012,19(2):5-8.
[33] 张善文,杨永红.胜利老区精细勘探方法与实践[J].中国海上油气,2016,28(2):37-44.
ZHANG Shan-wen,YANG Yong-hong.The Method and Practice of Fine Exploration in the Mature Oilfield of Shengli[J].China Offshore Oil and Gas,2016,28(2):37-44.
[34] 蔡忠东,单保杰,张 冲.沾化凹陷四扣洼陷油源对比[J].大庆石油地质与开发,2005,24(4):11-14.
CAI Zhong-dong,SHAN Bao-jie,ZHANG Chong.Oil and Source Correlation of Sikou Sag in Zhanhua Depression[J].Petroleum Geology and Oilfield Development in Daqing,2005,24(4):11-14.
[35] 彭平安,盛国英,傅家谟,等.高硫未成熟稠油非干酪根成因的证据[J].科学通报,1998,43(6):636-638.
PENG Ping-an,SHENG Guo-ying,FU Jia-mo,et al.The Evidence of Non-kerogen Genesis of Sulfur-rich Immature Crude Oil[J].Chinese Science Bulletin,1998,43(6):636-638.
[36] DAMSTE J S S,LEEUW J W.Analysis,Structure and Geochemical Significance of Organically-bound Sulphur in the Geosphere:State of the Art and Future Research[J].Organic Geochemistry,1990,16(4/5/6):1077-1101.
[37] 葛海霞,张枝焕,闵 伟,等.济阳坳陷青东凹陷低熟油生烃机理研究[J].现代地质,2016,30(5):1105-1114.
GE Hai-xia,ZHANG Zhi-huan,MIN Wei,et al.Study on the Genetic Mechanism of Immature Oil from Qingdong Sag,Jiyang Depression[J].Geoscience,2016,30(5):1105-1114.
[38] 庞雄奇,李素梅,黎茂稳,等.八面河地区“未熟—低熟油”成因探讨[J].沉积学报,2001,19(4):586-591.
PANG Xiong-qi,LI Su-mei,LI Mao-wen,et al.Origin of “Immature Oils” in the Bamianhe Oilfield of Eastern China[J].Acta Sedimentologica Sinica,2001,19(4):586-591.
[39] DAMSTE J S S,BETTS S,LING Y,et al.Hydrocarbon Biomarkers of Different Lithofacies of the Salt Ⅳ Formation of the Mulhouse Basin,France[J].Organic Geochemistry,1993,20(8):1187-1200.
[40] 彭传圣.陈家庄凸起及北坡油气成藏差异性[J].油气地质与采收率,2011,18(2):16-20.
PENG Chuan-sheng.Differentiation of Mechanisms and Models of Hydrocarbon Accumulation in Chenjia-zhuang Uplift and Its North Slope[J].Petroleum Geology and Recovery Efficiency,2011,18(2):16-20.
[41] 王永诗,常国贞,彭传圣,等.从成藏演化论稠油形成机理:以济阳坳陷罗家地区为例[J].特种油气藏,2004,11(4):26-29.
WANG Yong-shi,CHANG Guo-zhen,PENG Chuan-sheng,et al.Study of Heavy Oil Generation Mechanism from Reservoir Evolution:A Case Study of Luojia Area,Jiyang Depression[J].Special Oil and Gas Reservoirs,2004,11(4):26-29.
[42] MACHEL H G,KROUSE H R,SASSEN R.Products and Distinguishing Criteria of Bacterial and Thermochemical Sulfate Reduction[J].Applied Geochemistry,1995,10(4):373-389.
[43] CAI C F,HU G Y,LI H X,et al.Origins and Fates of H2S in the Cambrian and Ordovicianin Tazhong Area:Evidence from Sulfur Isotopes,Fluid Inclusions and Production Data[J].Marine and Petroleum Geology,2015,67:408-418.