张五平
摘 要:随着科学技术的发展,我国的机电一体化技术的发展对数控技术提出了更高的要求,不仅需要完成很多的智能功能,还需要扩展、模拟、延伸等新的智能功能,从而使得数控技术可以实现智能编程、智能监控、建立智能数据库等目标,运用智能控制技术可以实现这些目标。本文对智能控制及其在机电一体化系统中的应用进行了探讨分析。
关键词:智能控制;机电一体化;应用
引言
智能控制,就是指在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术,是用计算机模拟人类智能的一个重要领域,主要面向比传统控制更为复杂、多样的控制任务和控制目的,为当今社会的发展带来了更为广泛的适应空间,解决了传统控制无法实现的复杂系统的控制。传统的控制只是智能控制中的一个组成部分,是智能控制最底层的阶段。智能控制是由多个学科相互交叉所形成的学科,它的理论基础包括信息论、自动控制论、运筹学及人工智能等内容。机电一体化技术是指将机械技术、微电子技术、电力电子技术、信息技术等多种技术融合在一块的并且用于实际的综合技术。随着机电一体化的发展,机电一体化系统对控制的技术水平要求越来越高,原来的控制技术已经不能满足机电一体化系统的要求,因此,人们开始将目光投向发展比较迅速的智能控制,期望通过智能控制,达到机电一体化系统的控制目的。因此,本文将分析智能控制的特点和主要方法,探讨智能控制如何在机电一体化系统中得到应用,从而更好地实现对机电一体化系统的控制。
一、智能控制在机电一体化系统中所起的作用
目前智能控制在机电一体系统中的一系列产品中都得到了广泛应用。智能控制在机械制造中所应用到的领域主要有:智能传感器与智能学习,机械制造系统的智能监控和检测以及机械故障智能诊断等。在机电一体化系统的深入发展过程中,对于数控技术也提出了更高的要求,智能控制在机电一体化系统数控技术中的应用有助于及时准确的找出数控机械加工过程中的信息故障等问题,优化了数控机械的加工过程。
随着科技的进步,社会经济的发展,市场经济竞争也越发激烈,企业产品的性能成为了企业竞争的主要核心,而产品优优胜关键也在于机床的精度。与此同时生活水平的提升让人们对于机器智能化效果的需求也越来越大。故此智能控制在機电一体化系统中应用有助于优化产品的效能,提高机床的精度增强企业的竞争力,还能实现产品智能效果满足人们以及社会发展的需求,智能控制在机电一体化系统中的融合发展,不仅给机电一体化系统的操作流程进行优化调整的帮助,还可以大大的减少这一系统操作过程中的加工时间,进一步提高企业生产的工作效率。
二、智能控制在机电一体化系统中具体应用
一是智能控制在机械制造过程中的应用
机电一体化系统的机械制造需要向智能制造系统的方向发展,通过智能控制实现模拟专家智能活动,延伸或者取代部分的人脑劳动。在现代先进的机械制造系统中,智能控制能够实现用一些不完整或者精确的数据预测一些情况,通过神经网络和模糊数学对机械制造的过程实行动态的环境建模,通过传感器融合技术综合和预处理信息。智能控制还能够通过神经网络识别在线模式,对不完整的信息进行处理;通过模糊关系和集合的鲁棒性,运用模糊信息控制动作。智能控制还可以用“Then-If”的逆向推理反馈,选择比较令人满意的控制参数和模式对控制机构进行修改。
在机械制造领域,智能控制的应用主要包括智能学习、机械故障的智能诊断、决策与预测、机械零部件的可靠性分析、机械零件的优化设计、切削参数的优化、制造系统监控和智能检测、加工过程控制和智能传感器等方面。
二是智能控制在交流伺服系统的应用
伺服驱动装置是一种转换部件和装置,它能够使电信号转换为机械动作,并且决定着控制的功能和质量以及系统的动态性能,它是机电一体化的重要的组成部分。智能控制中电力电子技术的发展能够提高交流调速系统性能,实现直流的伺服系统向交流的伺服系统的转变。将智能控制引入交流伺服系统,能够帮助交流伺服系统应对比如负载扰动、参数时变、被控对象和交流电动机严重的非线性特性以及较强的耦合性这样一些不确定的因素,帮助交流伺服系统通过不确定的模型获得较满意的PID参数,满足系统的高性能指标要求。
常规的PID控制和智能控制技术相结合,能够形成智能PID,方法就是通过非线性的控制方式将人工智能引入到控制器,使系统的控制性能更好,并且能够不依赖控制器参数和精确的数学模型进行自动地调整,使得系统的适应性增强。如果只运用智能控制中的模糊控制算法,那么也能够提高交流伺服系统的静态性能和动态响应速度以及抗干扰能力,只是在自学习、自组织能力和抖振问题方面还存在着一些欠缺。因此,在交流伺服系统中还要用到智能控制中的神经网络等技术,从而减小抖振问题。
三是智能控制在机器人领域的应用
在动力学方面,机器人是非线性、时变和强耦合的;在控制参数方面,是多变量的;在传感器信息上,是多信息的;在控制任务的要求方面,是多任务的,因此,从这些方面的分析可以得出智能控制非常适合运用于机器人领域。而且,目前在机器人领域也广泛地使用到了智能控制技术,比如机器人地行走路径规划、机器人的定位和轨迹跟踪、机器人的自主避障、机器人姿态控制等。在机器人领域,人们可以通过采用智能控制中的模糊控制、人工神经网络、专家系统技术进行环境建模和检测、机器人定位、汽车柔性制造等。
为了提高机器人系统的适应能力和鲁棒性,人们可以综合运用几种智能控制技术,比如神经网络控制和模糊控制相结合、变结构控制和模糊控制相结合、专家系统控制和模糊控制相结合等。
四是智能控制在数控领域的应用
目前,数控系统要求性能具有高可靠性、高精度和高速,还要具备扩展、延伸和模拟智能行为的很强的知识处理功能,比如制造网络通信的能力、自学习和自组织的能力、感知加工环境能力、自规划能力等等。其中有的功能能够建立清晰的数学模型,但是有的功能不能够建立数学模型,所以为了实现这些功能,在数控领域必须运用到智能控制。比如,运用模糊控制,可以优化控制加工过程;运用模糊推理规划,能够诊断数控机床故障;运用模糊集合理论,可以调节和整定数控系统中的一些参数。
在数控领域,还可以利用遗传进化算法,找到数控系统的最佳加工路径;还可以运用智能控制中的预测和预算功能,在高速加工时加强对综合运动的控制。
总结
智能控制技术在机电一体化中有着广泛地使用,比如在数控领域、机器人领域、交流伺服系统领域和机器制造领域等。智能控制在机电一体化中有着很重要的作用,它能够实现传统的机械自动化技术无法实现的功能,使机电一体化系统更加完善。人们需要继续努力,使得机电一体化朝着高度智能化的方向发展。
参考文献
[1]金仁成,李水进,唐小琦,周云飞,童强,贾瑜.智能自适应数控加工技术研究综述[J].工具技术,2015(11).
[2]富宏亚,梁全.开放式数控技术及其在我国的发展状况[J].航空制造技术,2015(04).
[3]刘红奇,李斌,唐小琦,毛新勇.面向数控加工的嵌入式自适应控制技术[J].华中科技大学学报(自然科学版),2015(08).
[4]王世寰,王永章,付云忠.开放式软CNC发展趋势及其体系结构的研究[J].机床与液压,2015(02).
(作者单位:浙江大华系统工程有限公司)