五峰组—龙马溪组储层特征及甜点层段评价
——以昭通页岩气示范区A井为例

2017-12-22 05:46:35王鹏万李娴静王高成蒋立伟李君军
煤炭学报 2017年11期
关键词:龙马昭通示范区

王鹏万,李 昌,张 磊,邹 辰,李娴静,王高成,蒋立伟,张 朝,李君军,梅 珏

(1.中国石油杭州地质研究院,浙江 杭州 310023; 2.中国石油天然气集团公司 碳酸盐岩储层重点实验室,浙江 杭州 310023; 3.中国石油浙江油田公司,浙江 杭州 310023)

五峰组—龙马溪组储层特征及甜点层段评价
——以昭通页岩气示范区A井为例

王鹏万1,2,李 昌1,2,张 磊3,邹 辰3,李娴静1,王高成3,蒋立伟3,张 朝3,李君军3,梅 珏3

(1.中国石油杭州地质研究院,浙江 杭州 310023; 2.中国石油天然气集团公司 碳酸盐岩储层重点实验室,浙江 杭州 310023; 3.中国石油浙江油田公司,浙江 杭州 310023)

昭通页岩气示范区;五峰组—龙马溪组;储层特征;甜点层段

中国页岩气的勘探开发业已实现了跨越式的发展,成为第3个实现页岩气工业化生产的国家,至2016年底,中国页岩气产量达到78.82×108m3[1-4]。2015年,中国石油浙江油田公司在昭通页岩气示范区YS108井区,提交页岩气探明储量527.16×108m3[1-3],于2016年底完成了5.0亿m3的产量,并形成了“有序选区—阶段评价—分区建产—效益开发”的南方海相山地页岩气工程地质一体化勘探开发技术体系[5]。

前人对南方海相页岩储层的岩性组合、矿物组成、有机地球化学特征、物性特征、储集空间及孔隙结构、含气性及主控因素等方面进行了系统评价[6-16],明确优质页岩储层发育于深水陆棚相的厌氧还原环境[14,17],具有高TOC含量、高脆性、高孔隙度及高含气性等显著特点,对应“四高三低”的测井响应特征[11]。而页岩储层的微-纳米孔隙结构控制了天然气的储集性能与吸附能力[10,15],是页岩储层评价的关键[9-10]。针对其孔喉尺寸小、孔隙结构复杂及非均质性强的特征[18],国内外学者采用更高分别率与精度的新仪器及新技术[15,19],多尺度联合、定性-半定量表征了页岩储层孔隙系统[10-22],认为TOC含量为页岩中微-纳米孔隙结构最重要的控制因素[15],孔径小于50 nm的微孔和中孔提供了大部分比表面积和孔体积,是气体吸附和存储的主要场所[10-15]。

前人对昭通页岩气示范区的研究主要集中在有利区评选及甜点区预测方面,仅从地质角度定性的对页岩储层进行了研究,故昭通页岩气示范区五峰组—龙马溪组页岩储层研究相对薄弱[5,23-27]。笔者以研究区A井含气页岩段系统取样为基础(图1),通过薄片、氩离子抛光-场发射电镜、核磁共振、液氮吸附、X衍射及地化分析等多种方法,对昭通示范区五峰组—龙马溪组含气储层段进行系统评价,优选地质与工程有利页岩甜点层段,为水平井部署提供地质依据。

1 地质概况

昭通页岩气示范区地理位置位于云贵川3省交界处,大地构造位置处于四川盆地南缘[24-25]。上奥陶统五峰组—下志留统龙马溪组沉积早期,昭通示范区位于前陆盆地的隆后盆地[8],受川中古隆起及黔中隆起的隔挡,整体处于相对安静的深水环境,堆积一套暗色泥页岩[13-14,25-27],区内优质页岩(TOC含量>2%)厚度在30~40 m[23]。根据岩性、电性及笔石带变化特征,将五峰组—龙马溪组含气页岩段(即五峰组—龙一1亚段)分为6个小层(图1),并根据相关测试分析数据讨论6个小层的储层相关特征与差异,优选有利的页岩气储层段。

2 含气页岩段储层特征

2.1 岩石学特征

昭通页岩气示范区五峰组—龙一段的灰黑-黑色页岩主要为硅质页岩、钙质页岩、粉砂质页岩、黏土质页岩及其之间混合页岩[28-29],并见介壳灰岩、泥质粉砂岩及斑脱岩(图2,3)。五峰组—龙一段自下而上,笔石化石带由双列笔石逐渐向单列笔石过渡[14],生物硅质来源向上逐渐减少[26],黄铁矿富集程度逐渐降低,岩性总体表现为粉砂质及钙质含量增加、颗粒变粗及颜色变浅的特征[14,26-27]。且水平层理从无到有、逐渐发育,体现沉积水体逐渐变浅、还原性逐渐降低的演化过程。

2.2 有机地球化学特征

对A井五峰组—龙一1亚段71块岩芯样品分析,其TOC含量介于0.82%~6.70%,平均为3.03%;龙一2亚段91块岩芯与岩屑样品分析,其TOC含量分布在0.14%~1.24%,平均为0.75%(图1)。纵向上,TOC含量整体具有随深度加深而变大的趋势。

图1 昭通页岩气示范区A井五峰组—龙一段综合柱状图Fig.1 Lithology comprehensive profile of Wufeng-1th Member of Longmaxi Formation of well A in the Zhaotong shale gas demonstration zone

图2 A井五峰组—龙一段矿物含量分布Fig.2 Mineral content distribution of Wufeng-1th Member of Longmaxi Formation of the well A

2.3 页岩矿物组成

图3 昭通页岩气示范区五峰组—龙一段页岩照片Fig.3 Pictures of shale in the Wufeng-1th Member of Longmaxi Formation of the Zhaotong shale gas demonstration zone(a)硅质页岩,龙小层,TOC含量为4.40%,石英含量41.33%,长石含量8.86%,A井2 448.32 m;(b)钙质页岩,龙小层,TOC含量为3.70%,石英含量3.62%,方解石含量22.35%,白云石含量42.29%,A井2 453.83 m;(c)粉砂质页岩,见砂质纹层,龙小层,TOC含量为0.76%,石英含量27.10%,长石含量20.70%,A井2 413.00~2 413.28 m;(d)黏土质页岩,龙小层,TOC含量为2.15%,石英与长石含量37.12%,黏土含量49.47%,A井2 430.98 m;(e)斑脱岩,五一段,TOC含量为0.2%,石英与长石含量2.0%,黏土含量58.3%,黄铁矿38.4%,B井2 350.63 m;(f)深灰色介壳灰岩,五二段,A井2 455.95 m

表1昭通示范区A井五峰组-龙一段页岩矿物组成
Table1MineralcompositionofWufeng-1thMemberofLongmaxiFormationofthewellAinZhaotongshalegasdemonstrationzone

层位脆性矿物含量/%石英钾长石斜长石方解石白云石黄铁矿黏土矿物总量/%黏土矿物相对含量/%伊利石高岭石绿泥石伊/蒙混层脆性指数龙一4126.93~40.8133.52(9)0~3.840.80(9)5.40~14.419.24(9)5.07~11.609.39(9)1.70~6.604.18(9)0~3.601.90(9)30.95~49.4740.98(9)51.5~65.059.0(6)1.6~3.02.3(6)7~119(6)23~3930(6)59.02龙一3133.60~52.5138.24(6)0~1.20.2(6)5.30~8.996.28(6)9.5~13.912(6)8.90~12.408.38(6)0~6.103.58(6)33.40~37.6031.32(6)55~6560(2)2.0~3.02.5(2)8.0~9.08.5(2)24~3429(2)69.68龙一2122.10~41.3329.80(5)0~1.10.4(5)4.70~8.865.95(5)10.54~27.1015.79(5)6.99~2.8017.00(5)1.89~4.403.26(5)22.80~33.6027.81(5)69.0~73.070.4(3)1.2~2.01.5(3)4.0~6.04.7(3)20.0~26.023.4(4)72.19龙一1136.3(1)2.1(1)8.9(1)9.2(1)15.8(1)4.1(1)23.6(1)————76.40五峰组12.2~20.7518.23(5)0~1.800.52(5)3.60~7.075.75(5)8.60~30.2024.36(5)18.10~30.0023.64(5)0~14.806.18(5)8.50~35.2022.54(5)64~6062(2)1.5~2.01.8(2)7.6~8.17.8(2)26~3028(2)77.46

2.4 储集空间特征

2.4.1储集空间类型

前人基于孔隙尺寸或孔隙产状-结构或孔隙成因对页岩储集空间进行划分和深入研究[7-8,31-37],基本认为页岩储层大体可分为有机质孔隙、无机孔隙及微裂缝三大类储集空间。

图4 昭通页岩气示范区五峰组—龙一段页岩孔隙类型Fig.4 Pore types of Wufeng-1th Member of Longmaxi Formation of the Zhaotong shale gas demonstration zone(a)有机质孔呈蜂窝状,龙小层,C井2 487.10 m;(b)纳米级有机质孔,龙小层,TOC含量为3.9%,A井2 451.3 m;(c)黏土矿物片状微孔,龙小层,A井2 412.75 m;(d)方解石粒内溶孔,见碎屑颗粒间或其与黏土矿物间的贴粒缝,龙小层,TOC含量为3.61%,A井2 454.79 m;(e)黄铁矿晶间孔,龙小层,TOC含量为2.26%,A井2 435.99 m;(f)垂直缝,无充填,断面见黄铁矿,缝长43 cm,宽1 mm,龙小层,TOC含量为3.66%,A井2 443.42~2 443.85 m;(g)层间缝为方解石充填,五一段,TOC含量为4.29%,A井2 458.91~2 459.13 m;(h)微裂缝为方解石充填,龙小层,TOC含量为4.12%,石英含量52.51%,A井2 445.49 m

2.4.2孔隙结构

依据国际理论和应用化学协会(IUPAC)关于孔隙大小的划分标准[34],将其分为微孔(<2 nm)、中孔(2~50 nm)及大孔(>50 nm)。为全孔径综合表征五峰组~龙马溪组页岩储层孔隙结构和孔径分布特征,前人通过CO2吸附法、N2吸附法及高压压汞法分别测定微孔、中孔及大孔分布特征[9-17],认为中孔和大孔提供了页岩中主要的孔体积,控制了游离气的含量。微孔的比表面积与CH4最大吸附量具有很好的正相关关系,且提供了页岩中主要的比表面积,控制了吸附气含量。本文重点介绍A井五峰组—龙一段各小层样品液氮吸附法表征的孔隙特征(图5)。

图5 昭通页岩气示范区A井五峰组—龙一段页岩吸附解吸等温线Fig.5 Adsortption-desorption isotherms of Wufeng-1th Member of Longmaxi Formation of the Zhaotong shale gas demonstration zone

A井不同小层5个样品的低温液氮吸附等温线形态上存在一定的差别,基本上都呈反“S”(图5),类似IUPAC定义的Ⅱ型等温吸附线[9]。滞后环的形状反映了页岩孔隙结构,根据IUPAC对滞后环的分类[9-12,19],昭通示范区A井五峰组—龙一段储层等温线的滞后环大致属于H2型,总体表现为滞后环较宽大,吸附曲线变化缓慢,脱附曲线在中等相对压力处表现为陡直下降,且解吸曲线远比吸附曲线陡峭(图5),说明其页岩储层以细颈广体的墨水瓶状孔隙为主。同时,A井样品的Ⅱ型吸附等温线和滞后回线特征均表明五峰组~龙一段储层主体孔隙为微孔和中孔[10]。

A井5块样品BET比表面积为17.99~24.33 m2/g ,平均为20.99 m2/g(图5),远大于砂岩的比表面积[10],使气体吸附存储成为可能。其BJH孔体积为0.016 11~0.020 93 cm3/g,平均0.018 64 cm3/g;孔径为3.33~4.02 nm,平均3.70 nm(图5),也证实五峰组—龙一段储层孔隙以中孔为主。总体上,孔体积及比表面积与有机碳含量呈正相关性(图5)。以A-4样品为例,通过液氮吸附的DFT模型表征了孔体积和比表面积随孔径分布的变化(图6),揭示微孔对比表面贡献最大,其次是中孔,与前人认识基本一致[9-15,18-19]。

图6 基于液氮吸附DFT模型孔体积与比表面变化分布Fig.6 Pore volume and surface area change rates based on the DFT using the N2 adsorption of the well A

核磁共振可确定页岩储层的孔隙度、饱和度及孔径大小,定量表征页岩孔隙连通性[35]。若页岩孔径越小,其T2弛豫时间则越短,T2谱峰的位置与孔径大小有关,峰包络的面积与对应孔径的多少有关[36-37]。对A井10个样品进行了干样及饱和水样品的核磁共振T2谱的分析。以A-31样品为例进行说明,如图7所示。该样的饱和水T2谱呈双峰分布,且位于0.5 ms的谱峰相对较大,反映样品中较小的孔隙的比例较大;两峰见连续性差反映微小孔和大孔间连通性较差。与干燥样的T2谱图对比发现两个谱峰之差的面积较大,反映样品中也含有一定比例的可动流体孔隙度。

图7 A井龙一段页岩干样和饱和水样品核磁共振T2谱图Fig.7 NMR T2 spectra of 1th Member of Longmaxi Formation of the well A

2.4.3物性特征

2.5 含气量特征

2.5.1页岩吸附能力

图8 A井五峰组—龙一段页岩等温吸附曲线Fig.8 Adsorption of Wufeng-1th Member of Longmaxi Formation of the well A

2.5.2现场测试含气量

图9 A井页岩实测含气量与埋藏深度关系Fig.9 Relationship between shale gas content and burial depth of the well A

3 甜点层段评价

前人对页岩储层控制因素做了大量研究,认为页岩气富集受沉积与构造改造的双重控制[7-11,27-32]。沉积环境控制页岩的静态地质条件,即控制其岩性、地化特性及可压裂性,其决定了优质页岩厚度、有机碳高低及脆性矿物含量,进而控制了孔缝的发育程度及其含气量;而构造改造强度则影响页岩物性和含气性,决定了现今页岩储集性能和页岩气保存条件,进而控制页岩气的富集程度。页岩储层纵向上厚度较大,其储层品质非均质性较强,故优选纵向上地质与工程的甜点层段,可有效指导水平井箱体部位及水平井轨迹的优化。

3.1 地质甜点层段优选

3.1.1页岩静态地质条件

3.1.2构造特征与保存条件

昭通页岩气示范区主体位于川南低陡褶皱带南部[26,27],区内及周缘7组构造行迹交切表现为四期褶皱与断裂叠加改造,在四川盆地南缘及东南缘形成了六大构造转化与调节带[39],使得昭通示范区北部构造线由叙永—古蔺段近东西方向转换为珙县—兴文段的北西向。勘探实践证实,构造转化带与调节带的页岩改造变形相对最弱,且具有多源汇聚与复合成藏的优势,是最有利的页岩气富集与保存区[39-42]。

3.2 工程甜点层段优选

4 结 论

(1)昭通页岩气示范区五峰组—龙一段储层以硅质页岩为主,发育有机质孔隙、无机孔隙及微裂缝三大类储集空间,其中以机质孔隙和黏土矿物层间微孔隙为主。

(2)液氮等温吸附曲线及核磁共振T2谱图证实五峰组—龙一段储层孔隙孔径主体在2~5 nm,以中孔为主,且连通性较好。其中孔和微孔提供了主要的孔体积,而微孔对比表面贡献最大。

[1] 董大忠,王玉满,李新景,等.中国页岩气勘探开发新突破及发展前景思考[J].天然气工业,2016,36(1):19-32.

DONG Dazhong,WANG Yuman,LI Xinjing,et al.Break through and prospect of shale gas exploration and development in China[J].Natural Gas Industry,2016,36(1):19-32.

[2] 董大忠,邹才能,戴金星,等.中国页岩气发展战略对策建议[J].天然气地球科学,2016,27(3):397-406.

DONG Dazhong,ZOU Caineng,DAI Jinxing,et al.Suggestions on the development strategy of shale gas in China[J].Natural Gas Geoscience,2016,27(3):397-406.

[3] 邹才能,董大忠,王玉满,等.中国页岩气特征、挑战及前景(二)[J].石油勘探与开发,2016,43(2):166-178.

ZOU Caineng,DONG Dazhong,WANG Yuman,et al.Shale gas in China:characteristics,challenges and prospects(II)[J].Petroleum Exploation and Development,2016,43(2):166-178.

[4] 国土资源部地质勘查司(矿产勘查办公室).2016 年全国石油天然气资源勘查开采情况通报[N].中国国土资源报,2017-07-15.

[5] 梁兴,王高成,徐政语,等.中国南方海相复杂山地页岩气储层甜点综合评价技术——以昭通国家级页岩气示范区为例[J].天然气工业,2016,36(1):33-42.

LIANG Xing,WANG Gaocheng,XU Zhengyu,et al.Comprehensive evaluation technology forshale gas sweet spots in the complex marine mountains,South China:A case study from Zhaotong national shale gas demonstration zone[J].Natural Gas Industry,2016,36(1):33-42.

[6] 王书彦,胡润,任东超,等.页岩孔隙成因类型及其演化发育机理——以川东南地区页岩为例[J].山东科技大学学报(自然科学版),2015,34(6):9-15.

WANG Shuyan,HU Run,REN Dongchao,et al.Genetic typs and development mechanism of shale gas pores——with the example of shale in Southeast Sichuan[J].Journal of Shangdong University of Science and Technology(Natural Science),2015,34(6):9-15.

[7] 胡明毅,邱小松,胡忠贵,等.页岩气储层研究现状及存在问题探讨[J].特种油气藏,2015,22(2):1-7.

HU Mingyi,QIU Xiaosong,HU Zhonggui,et al.Current researches on shale gas reservoirsand existing problems[J].Special Oil and Gas Resevoirs,2015,22(2):1-7.

[8] 张士万,孟志勇,郭战峰,等.涪陵地区龙马溪组页岩储层特征及其发育主控因素[J].天然气工业,2014,34(12):16-24.

ZHANG Shiwan,MENG Zhiyong,GUO Zhanfeng,et al.Characteristics and major controlling factors of shale reservoirs in the Longmaxi Fm,Fuling area,Sichuan Basin[J].Natural Gas Industry,2014,34(12):16-24.

[9] 李贤庆,王元,郭曼,等.川南地区下古生界页岩气储层孔隙特征研究[J].天然气地球科学,2015,26(8):1464-1471.

LI Xianqing,WANG Yuan,GUO Man,et al.Pore characteristics of shale gas reservoirs from the Lower Paleozoic in the south of Sichuan Basin[J].Natural Gas Geoscience,2015,26(8):1464-1471.

[10] 杨峰,宁正福,胡昌蓬,等.页岩储层微观孔隙结构特征[J].石油学报,2013,34(2):301-311.

YANG Feng,NING Zhengfu,Hu Changpeng,et al.Characterization of microscopic pore structures in shale reservoirs[J].Acta Petrolei Sinica,2013,34(2):301-311.

[11] 张汉荣,王强,倪楷,等.川东南五峰—龙马溪组页岩储层六性特征及主控因素分析[J].石油实验地质,2016,38(3):320-325,332.

ZHANG Hanrong,WANG Qiang,NI Kai,et al.Six characteristics and main controlling factors of shale reservoirs in the Wufeng-Longmaxi Formations,southeastern Sichuan Basin[J].Petroleum Geology & Experiment,2016,38(3):320-325,332.

[12] 史淼,于炳松,薛志鹏,等.黔西北地区龙马溪组页岩气储层孔隙特征及其储气意义[J].地学前缘,2016,23(1):206-217.

SHI Miao,Yu Bingsong,XUE Zhipeng,et al.Pore characteristics and significance of the Longmaxi Formation shale gas reservoirs in northwestern Guizhou,China[J].Earth Science Forntiers,2016,23(1):206-217.

[13] 王玉满,董大忠,杨桦,等.川南下志留统龙马溪组页岩储集空间定量表征[J].中国科学:地球科学,2014,44(6):1348-1356.

WANG Yuman,DONG Dazhong,YANG Hua,et al.Quantitative characterization of reservoir space in the Lower Silurian Longmaxi Shale,southern Sichuan,China[J].Science China:Earth Sciences,2014,44(6):1348-1356.

[14] 王玉满,董大忠,李建忠,等.川南下志留统龙马溪组页岩气储层特征[J].石油学报,2012,33(2):551-561.

WANG Yuman,DONG Dazhong,LI Jianzhong,et al.Reservoir characteristics of shale gas in Longmaxi Formation of the Lower Silurian,southern Sichuan[J].Acta Petrolei Sinica,2012,33(2):551-561.

[15] 纪文明,宋岩,姜振学,等.四川盆地东南部龙马溪组页岩微-纳米孔隙结构特征及控制因素[J].石油学报,2016,37(2):182-195.

JI Wenming,SONG Yan,JIANG Zhenxue,et al.Micro-nano pore structure charac-teristics and its control factors of shale in Longmaxi Formation,southeastern Sichuan Basin[J].Acta Petrolei Sinica,2016,37(2):182-195.

[16] LIU Jun,YAO Yanbin,ZHU Zhengjie,et al.Experimental investigation of reservoir characteristics of the upper Ordovician Wufeng Formation shale in middle-upper Yangtze region,China[J].Energy Exploration & Exploitation,2016,34(4):527-542.

[17] LIU Jun,YAO Yanbin,ELSWORTH Derek,et al.Sedimentary characteristics of the Lower Cambrian Niutitang shale in the southeast margin of Sichuan Basin,China[J].Journal of Natural Gas Science and Engineering,2016,36:1140-1150.

[18] 朱如凯,吴松涛,苏玲,等.中国致密储层孔隙结构特征表征需要注意的问题及未来发展方向[J].石油学报,2016,37(11):1323-1336.

ZHU Rukai,WU Songtao,SU Ling,et al.Problems and future works of porous texture characterization of tight reservoirs in China[J].Acta Petrolei Sinica,2016,37(11):1323-1336.

[19] 姜振学,唐相路,李卓,等.川东南地区龙马溪组页岩孔隙结构全孔径表征及其对含气性的控制[J].地学前缘,2016,23(2):126-134.

JIANG Zhenxue,TANG Xianglu,LI Zhuo,et al.The whole aperture pore structure characteristics and its effect on gas content of the Longmaxi Formation shale in the sountheastern Sichuan Basin[J].Earth Science Forntiers,2016,23(2):126-134.

[20] CLARKSON C R,SOLANO N,BUSTIN R M,et al.Pore structure characterization of North American shale gas reservoirs using USANS/SANS,gas adsorption,And mercury intrusion[J].Fuel,2013,103:606-616.

[21] ROGER M S,NEAL R O.Pore types in the barnett and woodford gas shale:Contribution to understanding gas storage and migration pathways in fine-Grained rocks[J].AAPG Bulletin,2011,95(12):2017-2030.

[22] LOUCKS R G,REED R M,RUPPEL S C,et al.Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mud rock pores[J].AAPG Bulletin,2012,96(6):1071-1098.

[23] 陈志鹏,梁兴,张介辉,等.昭通国家级示范区龙马溪组页岩气储层超压成因浅析[J].天然气地球科学,2016,27(3):442-448.

CHEN Zhipeng,LIANG Xing,ZHANG Jiehui,et al.Genesis analysis of shale reservoir overpressure of Longmaxi Formation in Zhaotong demonstration area,Dianqianbei Depression[J].Nature Gas Geoscience,2016,27(3):442-448.

[24] 梁兴,叶熙,张介辉,等.滇黔北下古生界海相页岩气藏赋存条件评价[J].海相油气地质,2011,16(4):11-21.

LIANG Xing,YE Xi,ZHANG Jiehui,et al.Evaluation of preservation conditions of lower paleozoic marine shale gas reservoirs in the Northern Part of Dianqianbei Depression[J].Marine Origine Petroleum Geology,2011,16(4):11-21.

[25] 梁兴,叶熙,张介辉,等.滇黔北坳陷威信凹陷页岩气成藏条件分析与有利区优选[J].石油勘探与开发,2011,38(6):693-699.

LIANG Xing,YE Xi,ZHANG Jiehui,et al.Reservoir forming conditions and favorable exploration zones of shale gas in the Weixin Sag,Dianqianbei Depression[J].Petroleum Exploration and Development,2011,38(6):693-699.

[26] 伍坤宇,张廷山,杨洋,等.昭通示范区黄金坝气田五峰—龙马溪组页岩气储层地质特征[J].中国地质,2016,43(1):275-287.

WU Kunyu,ZHANG Tingshan,YANG Yang,et al.Geological characteristics of Wufeng-Longmaxi shale-gas reservoir in the Huangjinba gas field,Zhaotong National Shale Gas Demonstration Area[J].Geology in China,2016,43(1):275-287.

[27] 舒兵,张廷山,梁兴,等.滇黔北坳陷及邻区下志留统龙马溪组页岩气储层特征[J].海相油气地质,2016,21(3):22-28.

SHU Bing,ZHANG Tingshan,LIANG Xing,et al.Characteristics of the Lower Silurian Longmaxi Gas bearing shale reservoir in Dianqianbei depressionand adjacent area[J].Marine Origine Petroleum Geology,2016,21(3):22-28.

[28] 王玉满,王淑芳,董大忠,等.川南下志留统龙马溪组页岩岩相表征[J].地学前缘,2016,23(1):119-133.

WANG Yuman,WANG Shufang,DONG Dazhong,et al.Lithofacies characterization of Longmaxi Formation of the Lower Silurian,southern Sichuan[J].Earth Science Forntiers,2016,23(1):119-133.

[29] 吴蓝宇,胡东风,陆永潮,等.四川盆地涪陵气田五峰组—龙马溪组页岩优势岩相[J].石油勘探与开发,2016,43(2):189-197.

WU Lanyu,HU Dongfeng,LU Yongchao,et al.Advantageous shale lithofacies of Wufeng Formation-Longmaxi Formation in Fuling gas field of Sichuan Basin,SW China[J].Petroleum Exploation and Development,2016,43(2):189-197.

[30] 刘树根,王世玉,孙玮,等.四川盆地及其周缘五峰组龙马溪组黑色页岩特征[J].成都理工大学学报(自然科学版),2013,40(6):621-639.

LIU Shugen,WANG Shiyu,SUN Wei,et al.Characteristics of black shale in Wufeng Formation and Longmaxi Formation in Sichuan Basin and its peripheral areas[J].Journal of Chengdu University of Technology(Science & Technology Edition),2013,40(6):621-639.

[31] 张琴,刘畅,梅啸寒,等.页岩气储层微观储集空间研究现状及展望[J].石油与天然气地质,2015,36(4):666-674.

ZHANG Qin,LIU Chang,MEI Xiaohan,et al.Status and prospect of research on microscopic shale gas reservoir space[J].Oil & Gas Geology,2015,36(4):666-674.

[32] 张晓明,石万忠,徐清海,等.四川盆地焦石坝地区页岩气储层特征及控制因素[J].石油学报,2015,36(8):926-939,953.

ZHANG Xiaoming,SHI Wanzhong,Xu Qinghai,et al.Reservoir characteristics and controlling factors of shale gas in Jiaoshiba area,Sichuan Basin[J].Acta Petrolei Sinica,2015,36(8):926-939,953.

[33] 王社教,王兰生,黄金亮,等.上扬子区志留系页岩气成藏条件[J].天然气工业,2009,29(5):45-50.

WANG Shejiao,WANG Lansheng,HUANG Jinliang,et al.Accumulation conditions of shale gas reservoirs in Silurian of the upper Yangtze region[J].Natural Gas Industry,2009,29(5):45-50.

[34] IUPAC.Physical chemistry division commission on colloid and surface Chemistry,Subcommittee on characterization of porous soids:Recommend-ations for the characterization of porois solids[J].Pure and Applied Chemistry,1994,66(8):1739-1758.

[35] 严继民,张启元.吸附与凝聚:固体的表面与孔[M].北京:科学出版社,1979.

[36] 徐祖新,郭少斌.基于NMR和X-CT的页岩储层孔隙结构研究[J].地球科学进展,2014,29(5):624-631.

XU Zuxin,GUO Shaobin.Application of NMR and X-CT technology in the pore structure study of shale gas reservoirs[J].Advances in Earth Science,2014,29(5):624-631.

[37] 李军,金武军,王亮,等.利用核磁共振技术确定有机孔与无机孔孔径分布——以四川盆地涪陵地区志留系龙马溪组页岩气储层为例[J].石油与天然气地质,2016,37(1):129-134.

LI Jun,JIN Wujun,WANG Liang,et al.Quantitative evaluation of organic and inorganic pore size distribution by NMR:A case from the Silurian Longmaxi Formation gas shale in Fuling area,Sichuan Basin[J].Oil & Gas Geology,2016,37(1):129-134.

[38] 王同,杨克明,熊亮,等.川南地区五峰组—龙马溪组页岩层序地层及其对储层的控制[J].石油学报,2015,36(8):915-925.

WANG Tong,YANG Keming,XIONG Liang,et al.Shale sequence stratigraphy of Wufeng-Longmaxi Formation in southern Sichuan and their control on reservoirs[J].Acta Petrolei Sinica,2015,36(8):915-925.

[39] 徐政语,梁兴,王维旭,等.上扬子区页岩气甜点分布控制因素探讨——以上奥陶统五峰组-下志留统龙马溪组为例[J].天然气工业,2016,36(9):16-24.

XU Zhengyu,LIANG Xing,WANG Weixu,et al.Controlling factors for shale gas sweet spots distribution in the Upper Yangtze region:A case study of the Upper Ordovician Wufeng Fm-Lower Silurian Longmaxi Fm,Sichuan Basin[J].Natural Gas Industry,2016,36(9):16-24.

[40] 徐政语,梁兴,王希友,等.四川盆地罗场向斜黄金坝建产区五峰组—龙马溪组页岩气藏特征[J].石油与天然气地质,2017,38(1):132-143.

XU Zhengyu,LIANG Xing,WANG Xiyou,et al.Shale gas reservoir characteristics of the Wufeng-Longmaxi Formations in Huangjinba construction block of the Luochang Syncline,the Sichuan Basin[J].Oil & Gas Geology,2017,38(1):132-143.

[41] 魏祥峰,李宇平,魏志红,等.保存条件对四川盆地及周缘海相页岩气富集高产的影响机制[J].石油实验地质,2017,39(2):147-153.

WEI Xiangfeng,LI Yuping,WEI Zhihong,et al.Effects of preservation conditions on enrichment and high yield of shale gas in Sichuan Basin and its periphery[J].Petroleum Geology & Experiment,2017,39(2):147-153.

[42] 何治亮,胡宗全,聂海宽,等.四川盆地五峰组—龙马溪组页岩气富集特征与“建造-改造”评价思路[J].天然气地球科学,2017,28(5):724-733.

He Zhiliang,Hu Zongquan,NIE Haikuan,et al.Characterization of shale gas Enrichment in the Wufeng-Longmaxi Formation in the Sichuan Basin and its evaluation of geological construction-transformation evolution sequence[J].Natural Gas Geoscience,2017,28(5):724-733.

[43] 张晨晨,王玉满,董大忠,等.四川盆地五峰组-龙马溪组页岩脆性评价与“甜点层”预测[J].天然气工业,2016,36(9):51-60.

ZHANG Chenchen,WANG Yuman,Dong Dazhong,et al.Evaluation of the Wufeng-Longmaxi shale brittleness and prediction of “sweet spot layers” in the Sichuan Basin[J].Natural Gas Industry,2016,36(9):51-60.

CharacteristicoftheshalegasreservoirsandevaluationofsweetspotinWufeng-LongmaxiFormation:AcasefromtheAwellinZhaotongshalegasdemonsrationzone

WANG Pengwan1,2,LI Chang1,2,ZHANG Lei3,ZOU Chen3,LI Xianjing1,WANG Gaocheng3,JIANG Liwei3,ZHANG Zhao3,LI Junjun3,MEI Jue3

(1.PetroChinaHangzhouInstituteofPetroleumGeology,Hangzhou310023,China; 2.CNPCKeyLaboratoryofCarbonateReservoirs,Hangzhou310023,China; 3.PetroChinaZhejiangOilfieldCompany,Hangzhou310023,China)

Zhaotong shale gas demonstration zone;Wufeng-Longmaxi Formation;reservoir character;sweet spot

王鹏万,李昌,张磊,等.五峰组—龙马溪组储层特征及甜点层段评价——以昭通页岩气示范区A井为例[J].煤炭学报,2017,42(11):2925-2935.

10.13225/j.cnki.jccs.2017.0428

WANG Pengwan,LI Chang,ZHANG Lei,et al.Characteristic of the shale gas reservoirs and evaluation of sweet spotin Wufeng-Longmaxi Formation:A case from the A well in Zhaotong shale gas demonsration zone[J].Journal of China Coal Society,2017,42(11):2925-2935.doi:10.13225/j.cnki.jccs.2017.0428

P618.13

A

0253-9993(2017)11-2925-11

2017-04-01

2017-08-16责任编辑韩晋平

“十三五”国家重大专项资助项目(2016ZX05004-002);中国石油深层专项资助项目(2014E-32-02);中国石油科技管理部基金资助项目(2012B-0505)

王鹏万(1981—),男,湖北荆州人,高级工程师。E-mail:wangpw_hz@petrochina.com.cn

猜你喜欢
龙马昭通示范区
龙马春风、忠义千秋
宝藏(2022年1期)2022-08-01 02:12:58
发展中的昭通学院
“龙马”巡游
环球时报(2022-04-18)2022-04-18 14:55:01
河滩地建起中药材示范区
今日农业(2021年21期)2021-11-26 05:07:00
中国第三个国家级入境再制造示范区通过验收
国务院办公厅关于创建“中国制造2025”国家级示范区的通知
青海政报(2017年22期)2017-04-09 06:45:55
着力打造“青少年普法教育示范区”升级版
中国火炬(2015年12期)2015-07-31 17:38:35
文学自觉与当代文学发展趋势——从昭通作家群说开去
西南学林(2014年0期)2014-11-12 13:09:16
小地方文学史的可能与向度——冉隆中和《昭通文学三十年》
西南学林(2014年0期)2014-11-12 13:09:14
双生 龙马