周景宏++张文文
摘要: 为了准确控制输电工程造价水平,提出一种基于果蝇算法优化小波神经网络的混合预测模型。首先,对输电工程造价影响因素进行归一化处理,并将归一化结果作为输入变量;其次,利用果蝇算法对小波神经网络参数进行优化,在此基础上,利用优化后的小波神经网络模型预测输电工程造价;最后,将本文的预测结果和其他方法进行对比。算例结果表明,该混合模型的预测效果更理性,精度更高。
Abstract: In order to accurately control the transmission project cost, a hybrid prediction model based on the wavelet neural network optimized by the fruit fly algorithm is proposed. Firstly, the influencing factors of transmission project cost are normalized, and the normalized result is taken as input variable. Secondly, the parameters of wavelet neural network are optimized by using the fruit fly algorithm. On this basis, the optimized wavelet neural network model is used to predict the construction cost of transmission project. Finally, the forecast result of this article is compared with other methods. The results of the example show that the hybrid model is more rational and more accurate.
關键词: 输电工程;果蝇算法;小波神经网络;工程造价
Key words: transmission project;fruit fly algorithm;wavelet neural network;project cost
中图分类号:TM7;TU723.3 文献标识码:A 文章编号:1006-4311(2017)36-0214-02
3 结论
在输电工程造价的预测研究中,由于影响因素较为复杂,从而使得准确的工程造价预测比较困难。本文利用果蝇优化的小波神经网络模型进行预测,结果显示:静态投资工程造价的相对误差绝对值的最大值是6.55%,最小值是5.12%,预测精度较高,符合相关误差要求(±10%)。
参考文献:
[1]凌云鹏,阎鹏飞,韩长占.基于BP神经网络的输电线路工程造价预测模型[J].中国电力,2012,45(10):95-99.
[2]窦文雷,朴光绿,祝涛.输变电工程造价控制[J].农业科技与装备,2012,32(11):51-52.
[3]熊玮.输电工程造价估算的混合模型研究[D].北京:华北电力大学,2016:32-45.
[4]Niu Dongxiao. Research on neural network prediction of power transmission and transformation project cost based on GA-RBF and PSO-RBF [J].Applied Mechanics and Materials,2014(6):231-234.
[5]王佼.应用灰关联分析的PSO-SVR工程造价预测模型[J].华侨大学学报(自然科学版),2016,37(6):708-713.
[6]彭光金.小样本工程造价数据的智能学习方法及其在输变电工程中的应用研究[D].重庆:重庆大学,2010:45-68.
[7]韦俊涛.电力工程造价小样本估算模型研究[D].重庆:重庆大学,2009:61-71.
[8]Ding Shifei.An optimizing method of RBF neural network based on geneticalgorithm [J].Neural Computing and Application,2012(2):333-336.
[9]Chen Y, Peter B L, Guan C, et al. Short-term load Forecasting: similar day-based wavelet neural networks[J].IEEE Transactions on Power Systems, 2010,25(1):322-330.
[10]Guan C, Peter B L, Michel L D, et al. Very short-term load forecasting: wavelet neural networks with Data Pre-Filtering [J].IEEE Transactions on Power Systems,2013,28(1):30-41.
[11]侯逸文,沈炯,李益国.基于小波神经网络的火电单元机组负荷系统建模仿真研究[J].中国电机工程学报,2003,23(10):220-224.endprint