戴作科+董新汉
摘 要 设Ω和G都是边界局部连通的有界单连通区域,假设f是Ω到G的解析逆紧映射. 通过将单连通区域提升至单位圆盘,本文得到了G的边界点的分支数和其逆象点分支数之间的等式关系,并讨论了f的拓扑度和逆象点个数之间的不等式关系.
关键词 割点;拓扑度;分支数
中图分类号 G420; O174.5 文献标识码 A 文章编号 1000-2537(2017)05-0077-03
Topological Degree of Proper Holomorphic Mapping on Bounded Simply Connected Domains
DAI Zuo-ke, DONG Xin-han
(College of Mathematics and Computer Science, Hunan Normal University, Changsha 410081, China)
Abstract Letting Ω and G be two simply connected domains with locally connected boundary, letting f be a proper holomorphic mapping from Ω onto G, and lifting Ω and G onto unit discs, in this work, we have obtained the equality relationship between component numbers of the point on G and those of its different inverse image points on G. The inequality relationship between the topological degree of f and the number of the different inverse image points is also obtained and discussed.
Key words cut point; topological degree; component number
假設X和Y是两个拓扑空间,令Ω和G分别为X和Y中的两个子集,f:Ω→G为一个连续映射,如果G中每个紧子集的逆象集都是Ω中的紧集,则称f是Ω到G的逆紧映射[1]. 在分形几何与复分析的交叉研究中[2-6],Cantor边界性质的专题研究必须借助全纯逆紧映射的性质. 对一般解析函数(非逆紧),其定义域边界的象集分全平面C为若干个连通分支,则相关连通分支的个数、拓扑度和判别点个数又紧密联系着. 著名的Riemann-Hurwitz公式阐述了这个联系[7]. 为了更深入揭示Cantor边界性质中Cantor集C的性质,我们需要边界上割点的重数[8]和连通分支上的拓扑度之间的联系. 本文的目的就是刻画这种联系,至于它的应用我们将另文给出.
多于一点的连通紧集称为连续统,它包含有不可数多个点. 令E为一个局部连通的连续统,对于a∈E,如果E\{a}不连通,则称a为E的割点[8]. 令Ω为一个有界的区域,记由在Ω上解析且在上连续的函数构成的空间为A(Ω),赋予上确界范数,A(Ω)是一个Banach空间. 对于FΩ,记方程f(z)=w在F中的根的个数为nf(w,F),根的个数按重数计算.
参考文献:
[1] RUDIN W. Function theory in the unit ball of Cn [M]. New York: Springer Verlag, 1980.
[2] DONG X H, LAU K S. Cantor boundary behavior of analytic functions. Recent development in fractals and related fields[J]. Birkhuser, 2010,232(1):283-294.
[3] DONG X H, LAU K S, LIU J C. Cantor boundary behavior of analytic functions[J]. Adv Math, 2013,232(1):543-570.
[4] DONG X H, LAU K S, WU H H. Cauchy transform of self-similar measures: Starlikeness and univalence[J]. Trans Am Math Soc, 2017,369(7):4817-4842.
[5] DONG X H, LAU K S. Cauchy transforms of self-similar measures: the Laurent coefficients[J]. J Funct Anal, 2003,202(1):67-97.
[6] DONG X H, LAU K S. An integral related to the Cauchy transform on the Sierpinski gasket[J]. Exp Math, 2004,13(4):415-419.
[7] TEINMETZ N S. The formula of Riemann-Hurwitz and iteration of rational functions[J]. Complex Variables Theory Appl, 1993,22(3):203-206.
[8] POMMERENKE C. Boundary behaviour of conformal maps [M]. New York:Springer Verlag, 1992.endprint