贾明理, 张家骅
(1. 运城学院 物理与电子工程系, 山西 运城 044000;2. 发光学及应用国家重点实验室 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033)
阳离子交换增强β-NaGdF4∶Yb3+,Tm3+纳米晶近红外发光
贾明理1*, 张家骅2*
(1. 运城学院 物理与电子工程系, 山西 运城 044000;2. 发光学及应用国家重点实验室 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033)
为了增强 β-NaGdF4∶Yb3+,Tm3+纳米晶的上转换发光,克服外延增长钝化壳增大尺寸的不足,利用阳离子交换法制备核壳纳米结构,研究了样品在980 nm激发下的上转换发光性质。首先,利用高温热分解法制备了直径为10 nm的β-NaGdF4∶Yb3+,Tm3+纳米晶;然后,将制备的纳米晶与Gd3+在油酸-十八烯混合溶液中在300 ℃进行交换反应。实验结果表明,随着表面Yb3+和Tm3+被Gd3+取代,钝化壳的形成抑制了内部Yb3+的表面去激发过程,增强了内部Yb3+(2F5) → Tm3+(3H5,3F2,3)的能量传递,上转换发光逐渐增强。交换30 min后,Tm3+的3H4→3H6近红外发光增强达到最大,为对照样品的6.5倍,而尺寸基本保持不变。在生物成像方面,上转换纳米晶的尺寸必须与生物分子相匹配,同时发光强度要高,阳离子交换法既能增强近红外发光,又能保持原来小的尺寸,在生物成像领域具有很好的应用前景。
NaGdF4∶Yb3+∶Tm3+纳米晶; 阳离子交换; 能量传递; 上转换发光
Abstract: In order to enhance upconversion luminescence of β-NaGdF4∶Yb3+,Tm3+nanocrystals and meanwhile overcome the particle size enlargement caused by epitaxial growth technique, NaGdF4∶Yb3+,Tm3+@NaGdF4core-shell nanostructure was prepared using cation exchange strategy. The upconversion luminescence of the core-shell nanocrystals was investigated under 980 nm laser excitation. The oleate-capped β-NaGdF4∶Yb3+,Tm3+nanocrystals with diameter about 10 nm were firstly prepared by thermal decomposition procedure. Then, the cation exchange reaction of the nanocrystals with Gd3+was performed in l-octadecene and oleic acid mixture solution at 300 ℃. Experimental results show that the cation exchange strategy has significantly enhanced upconversion luminescence brightness of the nanocrystals, which attribute to the suppression of inner Yb3+de-excitation by the cation exchange shell and the enhancement of energy transfer from Yb3+(2F5) to Tm3+(3H5,3F2,3) inside of the nanocrystals. The maximum improvement of NIR emission for Tm3+3H4→3H6transition is achieved with 6.5 times than that of the contrast sample after 30 min of exchange reaction. It demonstrates that the cation exchange strategy can not only enhance NIR luminescence of the nanocrystals, but also well retain small particle size. It provides a simple and convenient way to development of high brightness upconversion nanocrystas with comparable in size to biomolecules, which has enormous applications in biomedical imaging fields.
Keywords: NaGdF4∶Yb3+∶Tm3+nanocrystals; cation exchange; energy transfer; upconversion luminescence
上转换纳米晶(UCNCs)在固态激光、平板显示、太阳能电池[1-3],特别是在生物标记、生物成像、临床诊断与治疗等生物领域具有广阔的应用前景[4-9]。作为荧光探针的重要替代材料,与传统的荧光染料和半导体量子点相比,UCNCs具有谱带窄、发光寿命长、化学稳定性高、刺入生物组织深等优点。在复杂的生物成像方面,一个首要的重要条件是UCNCs的尺寸要与生物分子能匹配[10]。大部分膜蛋白和球蛋白的尺寸在大约4~10 nm范围,较大尺寸的纳米晶将严重限制其接近较小的亚细胞结构、扰乱运行模式、阻碍扩散、干扰蛋白质功能或改变药物动力学等[10-12]。另一方面,随着UCNCs尺寸的减小,由表面缺陷、表面有机配体以及溶剂分子引起的表面猝灭增大,导致上转换发光效率急剧下降,限制了UCNCs从实验室研究走向临床应用[13-14]。目前,主要是通过外延生长技术,制备核@壳结构来提高UCNCs的发光效率[13-20]。钝化壳抑制了表面缺陷、溶剂及表面配体分子伸缩振动引起的无辐射驰豫,从而增强激活核的上转换发光效率。然而,外延生长核@壳结构必然增大UCNCs的尺寸,制约了其在生物领域的实际应用。
阳离子交换反应(CE)作为纳米晶后处理的一种非常有用的实验技术,不仅可以制备难以用直接合成手段制备的纳米晶,而且可以制备各种半导体核壳纳米结构[21-24]。目前,利用CE制备UCNCs核壳结构、增强上转换发光的研究工作很少[25]。Veggel和Dong研究组用Gd3+与球状PVP稳定的约20 nm NaYF4∶Yb,Tm纳米颗粒在水相中进行CE反应,制备了NaYF4∶Yb,Tm@NaGdF4纳米晶,但上转换发光强度增强不到1.5倍[26-27]。最近,Wang等报道了在12 nm 球状β-NaYF4∶Yb,Er纳米晶制备的原溶液中,注入Gd3+进行原位CE(一锅法),310 ℃交换0.5 h,得到保持原纳米晶尺寸的β-NaYF4∶Yb,Er@NaGdF4纳米晶,激活核的尺寸约为5 nm,钝化壳的厚度约为3.5 nm,上转换发光强度增强了29倍[28]。一锅法中β-NaYF4∶Yb,Er纳米晶制备过程中涉及α相经Ostwald熟化到β相的转变,溶液中仍有不少Na+、F-、Y3+、Yb3+、Er3+,无法消除外延生长壳的条件,溶液中阳离子的多样性增加了CE反应的复杂性。
本文选取NaGdF4作为基质材料,因其具有低声子能量和多模式成像的优点,是目前研究上转换最多的基质材料之一[29]。β-NaGdF4∶Yb3+,Tm3+在980 nm激发下具有高的近红外上转换发光效率,Tm3+的3H4→3H6发射对应生物组织的光学透过窗口(700~1 100 nm)。将油酸稳定的β-NaGdF4∶Yb3+,Tm3+纳米晶与Gd3+在油酸和1-十八烯混合溶液中进行CE反应,对交换不同时间的核壳结构研究了上转换发光性质。研究发现,由于表面Yb3+、Tm3+被Gd3+取代,形成NaGdF4钝化壳,拟制了内部Yb3+的表面去激发,增强了内部Yb3+(2F5) → Tm3+(3H5,3F2,3)的能量传递,近红外发光显著增强。
2.1 实验试剂
稀土氧化物Gd2O3、Yb2O3、Tm2O3的纯度为99.99%,购于yangkou国营稀土公司。油酸(OA, 90%)和1-十八烯(ODE, 90%)购于Alfa Aesar。NaOH、NH4F、无水甲醇、无水乙醇和环己烷购于北京化工试剂公司,均是分析纯,直接用于化学反应,未做提纯处理。
将稀土氧化物溶于稀盐酸,蒸发、真空干燥后即制得稀土卤化物LnCl3(Ln=Gd,Yb,Tm)。
2.2 实验仪器
样品晶体结构利用X射线衍射仪(XRD,Bruker D8 Advance 光谱仪)进行分析。利用场发射扫描电镜(SEM,Hitachi S-4800)进行颗粒尺寸和形貌表征。以980 nm半导体激光器为上转换激发光源,用荧光光谱仪(FLS920,Edinburgh Instruments,U.K.)检测上转换发光。
2.3 实验步骤
2.3.1 β-NaGdF4∶20%Yb3+,2%Tm3+纳米晶的制备
β-NaGdF4∶20%Yb3+,2%Tm3+纳米晶采用典型的高温热分解法制备[30]。将1.56 mmol GdCl3、0.4 mmol YbCl3和0.04 mmol TmCl3与30 mL ODE、12 mL OA混合于100 mL三颈瓶,磁力搅拌均匀。氮气保护下升温至160 ℃,反应30 min成透明溶液。自然冷却至室温后,加入含有5 mmol NaOH、8 mmol NH4F的20 mL甲醇溶液,剧烈搅拌30 min。升温至50 ℃恒定30 min,除去甲醇。之后在氮气保护下升温至300 ℃,反应1 h,自然冷却至室温。加入40 mL乙醇共沉淀,在8 000 r/min的转速下离心,沉淀物再用乙醇清洗2次,一部分在60 ℃干燥10 h用于XRD测试,一部分分散在环己烷溶液中用于CE反应。
2.3.2 β-NaGdF4∶20%Yb3+,2%Tm3+纳米晶与Gd3+的交换反应
用于CE反应的Gd3+浓度为上转换纳米晶中掺杂(Yb3+,Tm3+)离子浓度的近10倍。将2 mmol GdCl3与30 mL ODE、12 mL OA在100 mL三颈瓶中磁力搅拌混合均匀,氮气保护下升温至160 ℃,反应30 min。自然冷却至80 ℃后,加入 1 mmol β-NaGdF4∶20%Yb3+,2%Tm3+纳米晶的环己烷溶液10 mL,保持温度1 h,除去环己烷,并取样2 mL作为对比样品。此后升温,40 min后升至300 ℃,保持温度恒定并取样2 mL。15 min和30 min后分别再取样2 mL。这些样品直接用于上转换发光测试,研究Gd3+取代纳米晶表面的Yb3+、Tm3+后对上转换发光的影响。
图1为NaGdF4∶20%Yb3+,2%Tm3+纳米晶的XRD图谱,很好地对应了NaGdF4β相衍射峰(JCPDS: 26-0699),没有任何杂相衍射峰,表明样品为纯的β相NaGdF4。
图2为β-NaGdF4∶20%Yb3+,2%Tm3+纳米晶和交换30 min后的纳米晶的SEM图,可以看出,上转换纳米晶与Gd3+交换反应前后颗粒的尺寸基本保持不变,直径为10 nm左右。
图1 NaGdF4∶20%Yb3+,2%Tm3+纳米晶的X射线衍射谱及六角相NaGdF4标准X射线衍射谱
Fig.1 XRD pattern of diagram of NaGdF4∶20%Yb3+,2%Tm3+nanocrystals and standard card of hexagonal phase NaGdF4(JCPDS No. 27-0699)
图2 NaGdF4∶20%Yb3+,2%Tm3+纳米晶交换反应前(a)和300 ℃交换反应30 min后(b)的场发射扫描电镜图,标尺均为50 nm。
Fig.2 SEM images of NaGdF4∶20%Yb3+,2%Tm3+nanocrystals before(a) and after cation exchange at 300 ℃ with 30 min(b). Both scales are 50 nm.
图3(a)为980 nm激发下4个样品的上转换发射光谱。80 ℃的对照样品和3个300 ℃的阳离子交换样品在蓝光475 nm、红光700 nm、近红外光800 nm均出现发射峰,分别对应于Tm3+离子的1G4→3H6、3F2,3→3H6和3H4→3H6跃迁。从80 ℃升温至300 ℃的过程中,近红外发光明显增强,说明在升温的40 min过程中已经发生了表面的稀土阳离子交换。在300 ℃恒温下,稀土阳离子交换15 min和30 min后,近红外发光继续增强,分别比80 ℃对照样品增强3.3倍和6.5倍。蓝光和红光也同步增强,近红外发光与蓝光的相对强度比随着交换反应时间逐步增大(图3(b))。
图4为稀土离子Yb3+和Tm3+能级图以及β-NaGdF4∶20%Yb3+, 2%Tm3+纳米晶在980 nm激发下的能量传递过程。Yb3+离子吸收980 nm激发能并通过能量传递使邻近的Tm3+离子布居到3H5、3F2,3和1G4能级上,由1G4、3F2,3和3H4向基态的跃迁分别产生蓝光、红光和近红外发光。
图3 β-NaGdF4∶20%Yb3+,2%Tm3+纳米晶的980 nm 激发上转换发射光谱(a)和近红外光3H4→3H6与蓝光1G4→3H6发射积分强度比随阳离子交换反应时间的关系(b)
Fig.3 Upconversion luminescence spectra of β-NaGdF4∶20%Yb3+,2%Tm3+nanocrystals excited by 980 nm laser(a) and the integrated intensity ratio of NIR3H4→3H6to blue1G4→3H6emissions dependent on the cation exchange time(b)
图4 β-NaGdF4∶20%Yb3+,2%Tm3+纳米晶的980 nm 激发上转换发光过程能级图
Fig.4 Schematic energy level diagram of the main ET mechanisms in β-NaGdF4∶20%Yb3+,2%Tm3+nanocrystals under 980 nm excitation
图5为纳米晶表面层Yb3+和Tm3+离子与溶液中Gd3+离子交换形成NaGdF4钝化壳对近红外发光增强示意图。上转换纳米晶表面存在大量猝灭中心,表面层内Yb3+、Tm3+离子的直接猝灭[13,31],特别是内部Yb3+离子间通过能量迁移至表面猝灭中心,即能量迁移猝灭是导致β-NaGdF4∶20%Yb3+,2%Tm3+纳米晶发光弱的主要原因。在纳米晶中,由Yb3+离子能量迁移导致的辐射和无辐射存在一个平衡,仅有向纳米晶中心的能量迁移并通过能量传递给邻近的Tm3+离子产生上转换发光,即发光核区域(图5,红色部分)。表面层以及邻近表面层一定厚度壳层内的发光中心Tm3+离子实际处于不发光的暗态(图5 灰色和深灰色)[32-33]。随着表面Yb3+、Tm3+离子被Gd3+离子取代,NaGdF4钝化壳的形成使表面无辐射通道逐步减少,拟制了内部Yb3+离子能量迁移至表面的去激活过程,增大了Yb3+离子的激发能在内部的迁移,上转换发光得到增强。由于Yb3+离子的能量迁移是在整个纳米晶内发挥作用,原来处于明态的部分(图5 红色部分),Tm3+的3H4态再吸收Yb3+传递的能量,1G4的布居增加,蓝光增强。但更多的Yb3+激发能向原来处于暗态的Tm3+离子迁移(灰色部分),导致3F2,3能级布居的增加快于1G4的布居,近红外光与蓝光相对强度比随稀土阳离子的表面交换逐渐增大,如图3(b)所示。
图5 表面层 Yb3+、Tm3+离子与Gd3+离子交换增强近红外发光示意图。红色表示能够发光的明态部分,灰色和深灰色表示不发光的暗态部分,绿色表示表面层Yb3+、Tm3+离子被Gd3+交换之后形成的钝化壳。
Fig.5 Illustration of NIR enhancement of NaGdF4∶Yb3+,Tm3+nanocrystalsvialanthanide cation exchange at the surface layer. The red color and gray as well as dark gray colors indicate the part of bright state, dark state for Tm3+ions, respectively. The green color indicates a formation of inert shell NaGdF4after Yb3+, Tm3+ions located at the surface layer exchanged by Gd3+ions.
采用高温热分解法制备了10 nm的β-NaGdF4∶20%Yb3+,2%Tm3+纳米晶,通过稀土阳离子的交换反应显著增强了近红外发光。在300 ℃交换30 min后,近红外发光比80 ℃对照样品增强了6.5倍。增强的原因是表面钝化壳的形成和无辐射通道的减少拟制了内部Yb3+离子能量迁移至表面猝灭中心的去激发过程,激活了内部处于暗态的Tm3+离子。阳离子交换法既能增强近红外发光,又能保持原纳米晶的小尺寸,有利于上转换纳米晶在生物成像领域的应用。
[1] CHEN X, JIN L M, KONG W,etal.. Confining energy migration in upconversion nanoparticles towards deep uptraviolet lasing [J].Nat.Commun., 2016, 7:10304-10310.
[2] DENG R R, QIN F, CHEN R F,etal.. Temporal full-colour tuning through non-steady-state upconvertion [J].Nat.Nanotechnol., 2015, 10(3):237-242.
[3] WANG K F, JIANG J Q, WAN S J,etal.. Upconversion enhancement of lanthanide-doped NaYF4for quantum dot-sensitized solar cells [J].Electrochim.Acta, 2015, 155:357-363.
[4] ZHENG W, HUANG P, TU D T,etal.. Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection [J].Chem.Soc.Rev., 2015, 44(6):1379-1415.
[5] LIU Y S, TU D T, ZHU H M,etal.. Lanthanide-doped luninescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications [J].Chem.Soc.Rev., 2013, 42(16):6924-6958.
[6] DONG H, DU S R, ZHENG X Y,etal.. Lanthanide nanoparticles: from design toward bioimaging and therapy [J].Chem.Rev., 2015, 115(19):10725-10815.
[7] NADOR A, ZHAO J B, GOLDYS E M. Lanthanide upconversion luninescence at the nanoscale: fundamentals and optical properties [J].Nanoscale, 2016, 8(27):13099-13130.
[8] CHEN G Y, AGREN H, OHLCHANSKYY T Y,etal.. Light upconverting core-shell nanostructures: nanophotonic control for emerging applications [J].Chem.Soc.Rev., 2015, 44(6):1680-1713.
[9] LIU C Y, GAO Z Y, ZENG J F,etal.. Magnetic/upconversion fluorescent NaGdF4∶Yb,Er nanoparticle-based dual-modal molecular probes for imaging tiny tumorsinvivo[J].ACSNano, 2013, 7(8):7227-7240.
[10] OSTROWSKI A D, CHAN E M, GARGAS D J,etal.. Controlled synthesis and single-particle imaging of bright, sub-10 nm lanthanide-doped upconverting nanocrystals [J].ACSNano, 2012, 6(3):2686-2692.
[11] LOWE A R, SIEGEL J J, KALAB P,etal.. Selectivity mechanism of the nuclear pore complex characterized by singe cargo tracking [J].Nature, 2010, 467(7315):600-603.
[12] OKUHATA Y. Delivery of diagnostic agents for magnetic resonance imaging [J].Adv.DrugDeliv.Rev., 1999, 37(1-3):121-137.
[13] WANG F, WANG J, LIU X G. Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles [J].Angew.Chem.Int.Ed., 2010, 49(41):7456-7460.
[14] BOYER J C, VAN VEGGEL F C J M,. Absolute quantum yield measurements of colloidal NaYF4∶Er3+,Yb3+upconverting nanoparticles [J].Nanoscale, 2010, 2(8):1417-1419.
[15] CHEN G Y, QIU H L, PRASAD P N,etal.. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics [J].Chem.Rev., 2014, 114(10):5161-5241.
[16] GAI S L, LI C X, YANG P P,etal.. Recent progress in rare earth micro/nanocrystals: soft chemical synthesis,luminescent properties, and biomedical applications [J].Chem.Rev., 2014, 114(4):2343-2389.
[17] YI G S, CHOW G M. Water-soluble NaYF4∶Yb,Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence [J].Chem.Mater., 2007, 19(3):341-343.
[18] JOHNSON N J J, KORINEK A, DONG C H,etal.. Self-focusing by ostwald ripening: a strategy for layer-by-layer epitaxial growth on upconverting nanocrystals [J].J.Am.Chem.Soc., 2012, 134(27):11068-11071.
[19] ZHANG F, CHE R C, LI X M,etal.. Direct imaging the upconversion nanocrystal core/shell structure at upconverting optical properties [J].NanoLett., 2012, 12(6):2852-2858.
[20] LI X M, SHEN D K, YANG J P,etal.. Successive layer-by-layer strategy for multi-shell epitaxial growth: shell thickness and doping position dependence in upconverting optical properties [J].Chem.Mater., 2013, 25(1):106-112.
[21] TRIZIO L D, MANNA L. Forging colloidal nanostructuresviacation exchange reactions [J].Chem.Rev., 2016, 116(18):10852-10887.
[22] SON D H, HUGHES S M, YIN Y D,etal.. Cation exchange reaction in ionic nanocrystals [J].Science, 2004, 306(5698):1009-1012.
[23] ABEL K A, FITZGERALD P A, WANG T Y,etal.. Probing the structure of colloidal core/shell quantum dots formed by cation exchange [J].J.Phys.Chem. C, 2012, 116(6):3968-3978.
[24] ABEL K A, QIAO H J, YOUNG J F,etal.. Four-fold enhancement of the activation energy for nonradiative decay of excitons in PbSe/CdSe core/shellversusPbSe colloidal quantum dots [J].J.Phys.Chem.Lett., 2010, 1(15):2334-2338.
[25] YANG L W, LI Y, LI Y C,etal.. Quasi-seeded growth, phase transformation, and size tuning of multifunctional hexagonal NaLnF4(Ln=Y, Gd, Yb) nanocrystalsviainsitucation exchange reaction [J].J.Mater.Chem., 2012, 22(5):2254-2262.
[26] DONG C H, VAN VEGGEL F C J M. Cation exchange in lanthanide fluoride nanoparticles [J].ACSNano, 2009, 3(1):123-130.
[27] DONG C H, KORINEK A, BLASIAK B,etal.. Cation exchange: a facile method to make NaYF4∶Yb,Tm-NaGdF4core-shell nanoparticles with a thin, tunable and uniform shell [J].Chem.Mater., 2012, 24(7):1297-1305.
[28] DENG M L, WANG L Y. Unexpected luminescence enhancement of upconverting nanocrystals by cation exchange with well retained small particle size [J].NanoRes., 2014, 7(5):782-793.
[29] ZHANG X W, ZHAO Z, ZHANG X,etal.. Magnetic and optical properties of NaGdF4∶Nd3+,Yb3+,Tm3+nanocrystals with upconversion/downconversion luminescence from visible to the near-infrared second window [J].NanoRes., 2015, 8(2):636-648.
[30] XIANG G T, ZHANG J H, HAO Z D,etal.. Importance of suppression of Yb3+de-excitation to upconversion enhancement in β-NaYF4∶Yb/Er@β-NaYF4sandwiched structure nanocrystals [J].Inorg.Chem., 2015, 54(8):3921-3928.
[31] ARPPE R, HYPPNEN I, PERLN,etal.. Quenching of the upconversion luminescence of NaYF4∶Yb3+,Er3+and NaYF4∶Yb3+,Tm3+nanophosphors by water: the role of the sensitizer Yb3+in non-radiative relaxation [J].Nanoscale, 2015, 7(27):11746-11757.
[32] GARGAS D J, CHAN E M, OSTROWSKI A D,etal.. Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging [J].Nat.Nanotechnol., 2014, 9(4):300-305.
[33] HOSSAN M Y, HOR A, LUU Q A,etal.. Explaining the nanoscale effect in the upconversion dynamics of β-NaYF4∶Yb3+,Er3+core and core-shell nanocrystals [J].J.Phys.Chem. C, 2017, 121(30):16592-16606.
贾明理(1972-),男,山西运城人,博士,讲师,2010年于中国科学院化学研究所获得博士学位,主要从事稀土纳米发光及分子光谱的研究。
E-mail: jiaml37@iccas.ac.cn张家骅(1965-),男,黑龙江呼兰人,博士,研究员,1997年于中国科学院长春物理研究所获得博士学位,主要从事稀土发光动力学与稀土发光材料的研究。
E-mail: zhangjh@ciomp.ac.cn
NIREnhancementofβ-NaGdF4∶Yb3+,Tm3+NanocrystalsviaCationExchangeReaction
JIA Ming-li1*, ZHANG Jia-hua2*
(1.DepartmentofPhysicsandElectronicEngineering,YunchengUniversity,Yuncheng044000,China; 2.StateKeyLaboratoryofLuminescenceandApplications,ChangchunInstituteofOptics,FineMechanicsandPhysics,ChineseAcademyofSciences,Changchun130033,China)
*CorrespondingAuthors,E-mail:jiaml37@iccas.ac.cn;zhangjh@ciomp.ac.cn
O482.31
A
10.3788/fgxb20173810.1267
2017-07-08;
2017-08-15
运城学院博士科研启动基金(YQ-2011035); 国家自然科学基金(51172226,61275055,11274007,11174278,51402284)资助项目 Supported by Doctoral Research Foundation of Yuncheng University(YQ-2011035); National Natural Science Foundation of China(51172226,61275055,11274007,11174278,51402284)
1000-7032(2017)10-1267-06