青山遮不住,毕竟东流去

2017-08-16 04:19张志华
出版人 2017年8期
关键词:层次化脑科学大脑

张志华

深度学习这个术语自2006年被正式提出后,在最近10年得到了巨大发展。它使人工智能(AI)产生了革命性的突破,让我们切实地领略到人工智能给人类生活带来改变的潜力。2016年12月,麻省理工大学出版社出版了Ian Goodfellow、Yoshua Bengio和Aaron Courville三位学者撰写的《深度学习》(Deep Learning)一书。三位作者一直耕耘于机器学习领域的前沿,引领了深度学习的发展潮流,是深度学习众多方法的主要贡献者。该书正应其时,一经出版就风靡全球。

该书包括三个部分,第一部分介绍基本的数学工具和机器学习的概念,它们是深度学习的预备知识。第二部分系统深入地讲解现今已成熟的深度学习方法和技术。第三部分讨论某些具有前瞻性的方向和想法,它们被公认为是深度学习未来的研究重点。因此,该书适用于不同层次的读者。我本人在阅读该书时受到启发良多,大有裨益,并采用该书作为教材在北京大学讲授深度学习课程。

这是一本涵盖深度学习技术细节的教科书,书中也蕴含了作者对深度学习的理解和思考,处处闪烁着深刻的思想,耐人回味。

作者在书中写到:“人工智能的真正挑战在于解决那些对人来说很容易执行、但很难形式化描述的任务,比如识别人们所说的话或图像中的脸。对于这些问题,我们人类往往可以凭直觉轻易地解决。”为了应对这些挑战,他们提出让计算机从经验中学习,并根据层次化的概念体系来理解世界,而每个概念通过与某些相对简单的概念之间的关系来定义。由此,作者给出了深度学习的定义:“层次化的概念让计算机构建较简单的概念来学习复杂概念。如果绘制出表示这些概念如何建立在彼此之上的一幅图,我们将得到一张‘深(层次很多)的图。由此,我们称这种方法为AI深度学习。”

作者指出:“一般认为,到目前为止深度学习已经经历了三次发展浪潮:20世纪40年代到60年代深度学习的雏形出现在控制论(cybernetics)中,20世纪80年代到90年代深度学习以联结主义(connectionism)为代表,而从2006年开始,以深度学习之名复兴。”

谈到深度学习与脑科学或者神经科学的关系,作者强调:“如今神经科学在深度学习研究中的作用被削弱,主要原因是我们根本没有足够的关于大脑的信息作为指导去使用它。要获得对被大脑实际使用算法的深刻理解,我们需要有能力同时监测(至少是)数千相连神经元的活动。我们不能够做到这一点,所以我们甚至连大脑最简单、最深入研究的部分都还远远没有理解。”值得注意的是,我国有些专家热衷倡导人工智能与脑科学或认知学科的交叉研究,推动国家在所谓的“类脑智能”等领域投入大量资源。且不论我国是否真有同时精通人工智能和脑科学或认知心理学的学者,至少对交叉领域,我们都应该怀着务实、理性的求是态度。唯有如此,我們才有可能在这一波人工智能发展浪潮中有所作为,而不是又成为一群观潮人。

深度学习和人工智能不是飘悬在我们头顶的框架,而是立足于我们脚下的技术。我们诚然可以从哲学层面或角度来欣赏科学与技术,但过度地从哲学层面来研究科学问题只会导致一些空洞的名词。关于人工神经网络在20世纪90年代中期的衰落,作者分析到:“基于神经网络和其他AI技术的创业公司开始寻求投资,其做法野心勃勃但不切实际。当AI研究不能实现这些不合理的期望时,投资者感到失望。同时,机器学习的其他领域取得了进步。比如,核方法和图模型都在很多重要任务上实现了很好的效果。这两个因素导致了神经网络热潮的第二次衰退,并一直持续到2007年。”

“其兴也悖焉,其亡也忽焉”。这个教训也同样值得当今基于深度学习的创业界、工业界和学术界等警醒。

猜你喜欢
层次化脑科学大脑
从STEM到STEAM:脑科学基础及教育启示
面向量化分块压缩感知的区域层次化预测编码
脑科学在语文阅读教学中的应用举隅
铁路传送网OTN设备互联互通开销层次化处理研究
舰船系统间电磁兼容性的层次化优化方法
基于层次化分类器的遥感图像飞机目标检测