折线温差分布下倒虹吸横向温度应力计算

2017-07-29 09:05柏文文季日臣张彤锋
南水北调与水利科技 2017年4期

柏文文+季日臣+张彤锋

摘要:通过引进公路桥梁规范中的折线温差分布函数,推导了折线温差分布下倒虹吸横向温度自约束应力和框架约束应力计算公式,利用文章推导的公式,计算了倒虹吸处于停运状态时,突遇骤然降温作用时的温度应力,计算表明:倒虹吸内表面总应力是温差和壁厚的函数,当壁厚不变,温差减小50%时,其温度应力相应的也减小50%,当温差不变,壁厚减小50%时,其温度应力减小17%;采用相同的工程实例,按照折线温差分布函数和指数温差分布函数分别计算倒虹吸温度应力,发现前者计算值偏大,在设计时若按照折线温差分布模式考虑倒虹吸温度荷载,能提高倒虹吸抗裂性能。

关键词:倒虹吸;自约束应力;框架约束应力;温度荷载;抗裂性能

中图分类号:TV672.5 文献标志码:A 文章编号:1672-1683(2017)04-0175-05

Abstract:Based on the fold line distribution function of temperature difference for highway bridges,we derived the calculation formulas for transverse thermal self-restraint stress and framework-restraint stress of inverted siphons.Using the calculation formulas,we calculated the thermal stress of inverted siphons in winter downtime when cold snap invades.Our calculations showed that the total stress of the inner surface of an inverted siphon is a function of the wall thickness and the temperature difference.When wall thickness is constant and temperature difference decreases by 50%,the thermal stress also decreases by 50%.When the temperature difference is constant and the wall thickness decreases by 50%,the thermal stress decreases by 17%.The thermal stress of inverted siphons calculated by the fold line distribution function of temperature difference was larger than that calculated by the exponential distribution function.If the temperature load of inverted siphons is considered on this basis in design,the crack resistance of inverted siphons can be significantly improved.

Key words:inverted siphon;self-restraint stress;framework-restraint stress;temperature load;crack resistance

橋梁、渡槽、涵闸结构的温度应力研究成果较多[1-17],大体积混凝土温度应力方面,朱伯芳院士已取得一系列研究成果[18-19],然则倒虹吸温度应力研究相对落后,虽有文献分析倒虹吸在冬季施工期的温度应力[20]和温度应力对预应力结构的影响[21],然则,已有文献对倒虹吸的温度应力计算关注较少,笔者通过引进公路桥梁规范中的温差分布函数,将对倒虹吸横向温度应力计算公式进行推导,并对南水北调中线工程勒马河倒虹吸在冬季停运状态时,骤然降温作用下,利用文章推导公式进行倒虹吸横向温度应力的计算。

1 温差分布函数

对于渡槽、倒虹吸等混凝土结构,由于没有温度应力计算方面的规范,但考虑到倒虹吸与桥梁结构的共性,材料方面,倒虹吸结构和桥梁结构的材料一般均为钢筋混凝土材料,其导热系数相差不大,导热规律具有明显的相似性;边界条件方面,桥梁结构内外表面均和大气接触,为第三类边界条件,而倒虹吸内表面边界条件视其运行情况不同属于第三类边界条件(停运期)或第一类边界条件(正常运行期),外表面始终属于第一类边界条件,而倒虹吸边界条件的不同最后直接影响边界温度,而不会影响温差函数类型,只是温差值大小不同,综上所述,笔者认为可以借鉴桥梁中的相关规范,将桥梁的温差分布函数引入到倒虹吸温度应力进行计算当中。

依据公路钢筋混凝土及预应力钢筋混凝土桥涵设计规范 (JTG D62-2004)的规定,预应力混凝土连续梁桥的温差分布如图1所示,图中,h为梁高,T1、T2温差值,根据铺装类别的不同,取值有所不同,a1=0.1 m, a2=0.3 m [12],负温差为正温差乘以-0.5[23]。

对倒虹吸结构,按照弹性理论,在忽略管内水流在流经倒虹吸管时的水温变化,其温差分布沿倒虹吸长度方向是均匀分布的,则该温度应力问题简化为平面应变问题,再忽略倒角处复杂的热传导状态,倒虹吸温差分布如图2所示。

2 倒虹吸横向温度应力

根据前述的折线温差分布函数,推导倒虹吸横向温度应力计算公式。倒虹横向吸温度应力计算分为自约束应力和框架约束应力,总应力是自约束应力和框架约束应力之和[24]。

(2)按照折线温差分布函数计算的倒虹吸温度应力,比指数温差分布函数计算的倒虹吸温度应力大[25],在设计时,若按折线温差计算结果考虑倒虹吸温度应力,能提高倒虹吸抗裂性能。

(3)温度应力在距离板表面0.1 m范围内,应力变化幅度最大,这与指数温差函数计算的变化趋势[15]一致。

(4)对比计算公式计算结果和ANSYS计算结果,发现两种计算方法的计算结果相接近,为此笔者认为此计算公式具有其合理性。

4 结语

(1)文章通过引入公路桥梁中的温差分布函数,通过一系列假定,导出了倒虹吸横向温度应力计算公式,计算公式简单明确,具有一定的实用价值。

(2)实例计算表明,倒虹吸在冬季停运期,突遇骤然降温时,会在倒虹吸内表面产生较大的温度拉应力,这应当在倒虹吸后期运行过程中引起重视。

参考文献(References):

[1] 李辉,刘建军.新疆北疆寒区渡槽温度应力的分析[J].石河子大学学报:自然科学版,2009(5):642-645.(LI Hui,LIU Jian-jun.The thermal stresses influence of aqueduct structure in cold area of North Xinjiang[J].Journal of Shihezi University:NaturalScience,2009(5):642-645.(in Chinese))DOI:10.13880/j.cnki.65-1174/n.2009.05.008

[2] 陳武,张东,李双洋,等.引洮工程封闭渡槽输水期间热力耦合分析[J].水利水运工程学报,2012(3):20-25.(CHEN Wu,ZHANG Dong,LI Shuang-yang,et al.Coupled thermo-mechanical analysis of a closed aqueduct of the Gansu Tao Diversion Project during operation[J].Hydro-Science and Engineering,2012(3):20-25.(in Chinese))DOI:10.16198/j.cnki.1009-640x.2012.03.012

[3] 张世宝,马军,司建强,等.大型涵洞式渡槽施工期温度场仿真分析[J].水利水电技术,2012(4):79-82.(ZHANG Shi-bao,MA Jun,SI Jian-qiang,et al.Simulative analysis on temperature field of large culvert aqueduct during construction[J].Water Resources and Hydropower Engineering,2012(4):79-82.(in Chinese))DOI:10.13928/j.cnki.wrahe.2012.04.022

[4] 刘平,罗连生.渡槽温度荷载理论分析与计算[J].山西建筑,2013,(22):181-183.(LIU Ping,LUO Lian-sheng.Theoretical analysis and calculation under aqueduct temperature load[J].Shanxi Architecture,2013,(22):181-183.(in Chinese))DOI:10.13719/j.cnki.cn14-1279/tu.2013.22.072

[5] 李晓克,张晓燕,张学朋,等.预应力混凝土渡槽温度影响及设计研究[J].长江科学院院报,2012(1):44-48.(LI Xiao-ke,ZHANG Xiao-yan,ZHANG Xue-peng,et al.Temperature effect on prestressed concrete drainage aqueductand its design considerations[J].Journal of Yangtze River Scientific Research Institute,2012(1):44-48.(in Chinese))

[6] 严瑾.桥梁混凝土裂缝与温度应力关系规律研究[J].中外建筑,2015(7):198-200.(YAN Jin.Regularity research of the relationship between bridge concrete cracks and temperature stress[J].Chinese and Overseas Architecture,2015(7):198-200.(in Chinese))

[7] 肖维,焦隆华.基于高温沥青摊铺温度场的钢筋混凝土连续箱梁桥有限元研究[J].公路工程,2014(6):302-304,329.(XIAO Wei,JIAO Long-hua.FEA study on rc continuous box girders based on thermal filed of asphalt paving[J].Highway Engineering,2014(6):302-304,329.(in Chinese))

[8] 周勇政,朱尔玉,李学民,等 高速铁路简支箱梁的温差控制[J].北京交通大学学报,2014(1):88-93.(ZHOU Yong-zheng,ZHU Er-yu,LI Xue-min,et al.Temperature difference control for simply supported box girder of high-speed railway[J].Journal of Beijing Jiaotong University,2014(1):88-93.(in Chinese))

[9] 劉振宇,陈宝春.钢管混凝土桁拱热脱粘及温度应力分析[J].公路交通科技,2011(7):67-72.(LIU Zhen-yu,CHEN Bao-chun.Analysis on thermal debonding and stress of CFST truss arch[J].Journal of Highway and Transportation Research and Development,2011(7):67-72.(in Chinese))

[10] 彭友松,强士中.公路混凝土箱梁三维温度应力计算方法[J].交通运输工程学报,2007(1):63-67.(PENG You-song,QIANG Shi-zhong.3-D thermal stress computation method of highway concrete box-girder[J].Journal of Traffic and Transportation Engineering,2007(1):63-67.(in Chinese))

[11] 季日臣,严娟,苏小凤.混凝土箱形渡槽日照高温下结构安全研究[J].南水北调与水利科技,2013 (6):90-92,109.(JI Ri-chen,YAN Juan,SU Xiao-feng.Structural safety research of concrete box aqueduct under solar radiayion with high temperature[J].South-to-North Water Transfers and Water Science & Technology,2013 (6):90-92,109.(in Chinese))

[12] 季日臣,夏修身,陈尧隆,等.骤然降温作用下混凝土箱形渡槽横向温度应力分析[J].水利水电技术,2007,38(1):50-52.(JI Ri-chen,XIA Xiu-shen,CHEN Yao-long,et al.Analysis on transverse thermal stress of concrete box aqueduct under sudden drop in temperature[J].Water resources and hydropower engineering,2007,38(1):50-52.(in Chinese))DOI:10.13928/j.cnki.wrahe.2007.01.010

[13] 严娟,季日臣,马虎迎.箱形渡槽越冬期间表面保温能力计算[J].水利水运工程学报,2013(6):88-91.(YAN Juan,JI Ri-chen,MA Hu-ying.Calculation of superficial insulation capacity for box aqueduct during the winter[J].Hydro-science and engineering.2013(6):88-91.(in Chinese))DOI:10.16198/j.cnki.1009-640x.2013.06.014

[14] 王长德,冯晓波,朱以文,等.水工渡槽的温度应力问题[J].武汉水利电力大学学报,1998,31(5):7-11.(WANG Chang-de,FENG Xiao-bi,ZHU Yi-wen,et al.Research on thermal stress of aqueduct[J].Wuhan Univ.of Hdr.& Elec.Eng.1998,31(5):7-11.(in Chinese))

[15] 张元海,李乔.桥梁结构日照温差二次力及温度应力计算方法的研究[J].中国公路学,2004,17(1):49-52.(ZHANG Yuan-hai,LI Qiao.Study of the method for calculation of the thermal stress and secondary force of bridge structure by solar radiation[J].China Journal of Highway and Transport,2004,17(1):49-52.(in Chinese))

[16] 毛松鹤.混凝土箱形输水桥日照温度场及温度应力研究[J].山西建筑,2012(33):190-191.(MAO Song-he.The solar radiation temperature field and thermal stresses research of concrete box water bridge[J].Shanxi Architecture,2012(33):190-191.(in Chinese))DOI:10.13719/j.cnki.cn14-1279/tu.2012.33.058

[17] 王同生,于子忠.涵闸混凝土的温度应力与温度控制[M].北京:中国环境科学出版社,2010.(WANG Tong-sheng,YU Zi-zhong.The thermal stress and temperature control of culvert concrete[M].Beijing:China Environmental Science Press,2010.(in Chinese))

[18] 朱伯芳,吴龙珅,李玥,等.混凝土坝施工期坝块越冬温度应力及表面保温计算方法[J].水利水电技术,2007,38(8):34-37.(ZHU Bo-fang,WU Long-sheng,LI Yue,et al.The thermal stress and superficial thermal insulation of concrete dam under construction in winter in temperature control of cold regions[J].Water Resources and Hydropower Engineering,2007,38(8):34-37.(in Chinese))

[19] 朱伯芳.大體积混凝土温度应力与温度控制[M].北京:中国水利水电出版社,1998.(ZHU Bo-fang.Thermal stress and temperature control of mass concrete[M].Beijing:China WaterPower Press,1998.(in Chinese))

[20] 杨俊成,郭磊,何定,等.倒虹吸混凝土冬季施工期温控防裂研究[J].混凝土,2010 (12):111-113.(YANG Jun-cheng,GUO Lei,LIU Yan-ping,et al.Study on concrete′s temperature control measures for the inverted siphon project in winter[J].concrete,2010 (12):111-113.(in Chinese))

[21] 张龙飞,姚贤华,岳超然,等.温度变化对大型预应力混凝土倒虹吸结构受力的影响[J].南水北调与水利科技,2013,11(4):196-199.(ZHANG Long-fei,YAO Xian-hua,YUE Chao-ran,et al.Infulence of temperature change on behaviors large prestressed concrete inverted siphon[J].South-to-North Water Transfers and Water Science & Technology.2013,11(4):196-199.(in Chinese))

[22] 张元海,李乔.预应力混凝土连续箱梁桥的温度应力分析[J].土木工程学报,2006(3):98-102.(ZHANG Yuan-hai,LI Qiao.Analysis of thermal stress for prestressed concrete continuous box-girder bridges[J].China Civil Engineering Journal,2006,39(3):98-102.(in Chinese))DOI:10.15951/j.tmgcxb.2006.03.015

[23] 聂玉东.寒区大跨径混凝土箱梁桥温度场及温度效应分析[D].哈尔滨:哈尔滨工业大学,2013.(NIE Yu-dong.Analysis of temperature field and temperature effect for long span concrete box girder bridges in cold[d].Harbin: Harbin Institute of Technology,2013.(in Chinese))

[24] 刘兴法.混凝土结构的温度应力分析[M].北京:人民交通出版社,1991:94-100.(LIU Xing-fa.Thermal stress analysis of concrete structure[M].Beijing:China Communication Press,1991:94-100.(in Chinese))

[25] 柏文文,季日臣,徐志强.冬季停运期倒虹吸横向温度应力简化计算[J].南水北调与水利科技,2015,13(3):601-605.(BAI Wen-wen,JI Ri-chen,XU Zhi-qiang.Simplified calculation of transverse thermal stress of inverted siphon in winter downtime[J].South-to-North Water Transfers and Water Science & Technology.2015,13(3):601-605.(in Chinese))DOI:10.13476/j.cnki.nsbdqk.2015.03.045