赵义逢,郑学林
( 上海海事大学,上海 201306 )
基于基团贡献法推算混合制冷工质表面张力
赵义逢,郑学林
( 上海海事大学,上海 201306 )
基于基团贡献法,计算了现有四种纯组分摩尔表面积下,15种二元、4种三元混合制冷工质表面张力。通过对比不同摩尔表面积模型下的计算精度,得出利用Rasmussen摩尔表面积模型计算二元、三元混合制冷工质表面张力可得到较高精度。1193组二元混合制冷工质表面张力的相对平均偏差为0.15mN·m-1,100组三元混合制冷工质表面张力的相对平均偏差为-0.03mN·m-1。因此,在Rasmussen摩尔表面积模型下的基团贡献法能够用于新型环保混合制冷工质表面张力的推算。
基团贡献法;表面张力;混合制冷工质
随着人类对温室效应和臭氧空洞问题关注的增多,制冷、空调、热泵行业广泛采用的CFC与HCFC类物质将会被淘汰。寻找一种臭氧层衰减指数(ODP)为零、全球变暖潜势(GWP)较低的新型环保制冷工质成为国际上的研究热点。然而,在保证制冷工质优良的热力学性能、低毒性和不易燃性的前提下,目前为止未找到CFC和HCFC的替代物。例如,杜邦和霍尼韦尔提出的2,3,3,3-四氟丙烯(HFO-1234yf),由于其ODP为零,每100年GWP为4,与R134a有相似的热力学性能,是代替汽车空调制冷工质R134a的最佳工质[1,2]。但由于其弱可燃性阻碍了在汽车空调制冷系统中的应用[1,3]。混合制冷工质具备各组分制冷工质的优点,同时又能克服单一制冷工质的缺点。
表面张力作为重要的热物性参数,影响着气液界面中的能量传递和传质过程,对汽车空调蒸发器和冷凝器的计算和设计起着至关重要的作用。表面张力的预估模型有很多,如经典热力学理论[4-6]、梯度理论[7]、流体界面的范德瓦尔斯理论[8]和基团贡献模型[5]等。基团贡献法具有计算精度高和简单方便等优点,被广泛地应用于多元非电解质混合溶液表面张力的估算。对二元、三元混合制冷工质,考查不同纯组分Sprow[5]、Goldsack[6]、Paquette[9]、Rasmussen[5]四种摩尔表面积模型对混合制冷工质表面张力推算精度的影响,以寻求最优的纯组分摩尔表面积模型。
Sprow和Prausnitz[2]在引入表面相的基础上,假定整体相和表面相处于平衡,组分i的偏摩尔表面积与其摩尔表面积相等,推导出混合物表面张力的预估方程:
(1)
(2)
在混合物中,组分i在整体相和表面相的活度系数均可按下式计算[10]:
(3)
(4)
(5)
(6)
纯组分摩尔表面积模型的选择很大程度上影响混合物表面张力的推算精度。现有的纯组分摩尔表面积计算模型列于表1:
依据文献[5]中推算混合物表面张力计算机语言的方法进行编程,同时迭代过程中引入欠松弛法,取松弛因子ω=0.01,并对四种纯组分摩尔表面积下计算表面张力精度进行了对比。
为了对比不同纯组分摩尔表面积模型下,混合制冷工质表面张力的计算精度。本文推算了15种二元混合制冷工质共1193组数据、4种三元混合制冷工质共100组数据的表面张力值。基团贡献法中本文用到的参数见表2、表3。
表1 四种纯组分摩尔表面积模型
Table 1 Models for prediction on the surface area of pure substance
作者方程参数方程编号Sprow和Prausnitz[2]Ai=V2/3iBN1/3ANA是阿伏伽德罗常数,NA=6.022×1023,ViB是体相中组分i的摩尔体积。(7)GoldsackDE等[6]Ai=π(34π)2/3N1/3AV2/3iB(8)Paquette等[9]Ai=1.21N1/3AV6/15iCV4/15iBViC是组分i的临界摩尔体积(9)Rasmussen[5]Ai=2.5×109∑kυk,iQkQk是基团k的面积参数(10)
表2 基团贡献法中本文所用基团分类及基团参数[11-13]
Table 2 The group specifications and sample group assignments pure refrigerants in this work[11-13]
基团序号主基团次基团RkQk1CH2CH30.90110.848CH20.67440.540CH0.44690.22840CF2CF31.40601.38051CHFCH2F1.06991.000CHF0.84200.68852CHF2CH2F21.46541.460CHF21.23801.23254CClF2CClF21.80161.64455CHClF2CHClF22.02901.87256CHF3CHF31.63351.60811FF0.37710.440
表3 本文所用基团相互作用参数amn[11-13]
Table 3 The group interaction parameter amnfor pure refrigerants in this work[11-13]
基团CH2CF2CHFCHF2CClF2CHClF2CHF3FCH2033.51527.08134.38-47.3333.49-68.51117.77CF287.260—245.25—-54.69-321.67218.9CHF105.48000———218.9CHF235.69-11.44—0—-44.17-16.78218.9CClF274.33———0124.2197.41—CHClF221.63110.37—165.97-80.9302.73—CHF3203.282666.6—156.77-0.5452.660—F1538.316.0316.0316.03———0
混合制冷工质表面张力的推算值和实验值之间的相对平均偏差定义如下:
(10)
式中,N是实验数据个数,σexp和σcalc分别是混合制冷工质表面张力的实验值和推算值。
二元、三元混合制冷工质的相对平均偏差见表4、表5。观察计算结果:二元混合制冷工质数据点数总计1193个,在不同摩尔表面积模型下,即方程(7)~(10),得到的相对平均偏差分别为0.32mN·m-1,0.30 mN·m-1,0.29 mN·m-1和0.15 mN·m-1;三元混合制冷工质数据点数总计100个,相对平均偏差分别为0.22 mN·m-1,0.20 mN·m-1,0.19 mN·m-1和-0.03 mN·m-1。因此,利用Rasmussen摩尔表面积模型计算二元、三元混合制冷工质表面张力能得到较高的精度。图1、图2为Rasmussen摩尔表面积模型下,二元、三元混合制冷工质表面张力的相对平均偏差,相对平均偏差分布在零线上下。同时,值得注意的是,R290和R32、R32和R227ea两种二元混合制冷工质的高非理想特性,实验得到的表面张力值均小于混合物中各组分的表面张力值,使得混合工质表面张力的计算值与实验值相差较大。对于这一类混合工质,基团贡献法不再适用于其表面张力的计算。
基于基团贡献法,计算了在四种摩尔表面积模型下1193组15种二元混合制冷工质、100组4种三元混合制冷工质的表面张力,根据计算值和实验值之间的相对平均偏差,寻求适用于计算新型环保混合制冷工质表面张力的摩尔表面积模型。并得到结论:基团贡献法,二元、三元混合制冷工质表面张力最小相对平均偏差为Rasmussen摩尔表面积模型,能够用于计算新型环保混合制冷工质表面张力。
表4 在四种摩尔面积模型下二元混合制冷工质表面张力的平均偏差
Table 4 Average deviations for binary refrigerant mixtures by different surface area models
制冷工质测量方法①数据点数dσ(7)/mN·m-1dσ(8)/mN·m-1dσ(9)/mN·m-1dσ(10)/mN·m-1R290和R600a[14]DCRM390.02320.01140.0030-0.0608R290和R152a[15]DCRM510.53610.52110.52610.3768R152a和R134a[16]DCRM210.25800.25390.24840.1923R134a和R125[16]DCRM210.15180.11980.0905-0.3273R152a和R125[16],[17]DCRM750.05590.0083-0.0418-0.5538R134a和R143a[16],[18]DCRM124-0.1528-0.1772-0.2096-0.3599R32和R134a[16],[19]DCRM1500.09360.09130.09190.1166R32和R125[16],[20],[21]DCRM1690.34650.32740.3119-0.0556RE170和R290[22]DCRM57-0.1228-0.1590-0.2228-0.4867R22和R115[23]DCRM160.96550.94070.91720.6088R23和R116[24]DCRM101.08371.01860.88920.4840R143a和R227ea[25]DCRM121-0.0467-0.0568-0.0624-0.0628R143a和R125[16],[26],[27]DCRM,SLS35-0.2239-0.2254-0.2275-0.2485R290和R32[28]DCRM991.45051.45031.45031.4478R32和R227ea[29]DCRM2050.64370.64170.63960.6167 总计11930.31520.30100.28620.1477
注 DCRM:差分毛细管法;SLS:激光散射法。
表5 在四种摩尔面积模型下三元混合制冷工质表面张力的平均偏差
Table 5 Average deviations for ternary refrigerant mixtures by different surface area models
制冷工质测量方法数据点数dσ(7)/mN·m-1dσ(8)/mN·m-1dσ(9)/mN·m-1dσ(10)/mN·m-1 R404a[16],[26],[27]DCRM,SLS30-0.1785-0.1835-0.1888-0.2346 R407C[16],[21],[26]DCRM,SLS480.16560.14080.1257-0.1755 R417A[30]SLS120.50970.47010.48220.1581 R417B[30]SLS100.39170.36060.34950.1237 总计1000.22210.19700.1922-0.0321
图1 Rasmussen摩尔表面积模型下二元混合制冷工质表面张力的相对偏差Figure 1 Deviations for binary refrigerant mixitures by Rasmussen model
图2 Rasmussen摩尔表面积模型下三元混合制冷工质表面张力的相对偏差Figure 2 Deviations for ternary refrigerant mixtures by Rasmussen model
[1] Hulse R,Singh R,Pham H.Physical properties of HFO-1234yf[C]∥Proceedings of the 3rd IIR Conference on Thermophysical Properties and Transfer Processes of Refrigerants.2009:21-26
[2] 雷静,张功学,安秋凤.新型制冷剂 HFO-1234yf[J].化工新型材料,2010(001):35-37
[3] Minor B,Spatz M.HFO-1234yf low GWP refrigerant update[J].2008
[4] Nath S,Shishodia V.Surface tension of nonelectrolyte solutions[J].Journal of colloid and interface science,1993,156(2):498-503
[5] Sprow F B,Prausnitz J M,Rasmussen P.Surface thermodynamics of liquid mixtures[J].The Canadian Journal of Chemical Engineering,1967,45(1):25-28
[6] Goldsack D E,Sarvas C D.Volume fraction statistics and the surface tensions of non-electrolyte solutions[J].Canadian Journal of Chemistry,1981,59(20):2968-2980
[7] Larsen B L,Rasmussen P,Fredenslund A.A modified UNIFAC group-contribution model for prediction of phase equilibria and heats of mixing[J].Industrial & engineering chemistry research,1987,26(11):2274-2286
[8] Bongiorno V.Modified van der Waals theory of fluid interfaces[J].Physical Review A,1975,12(5):2213
[9] Paquette L J,An anisotropic model for the surface properties of a liquid[D].Laurentian University,Canada,1982
[10] Poling B E,Prausnitz J M,John Paul O C,et al.The properties of gases and liquids[M].New York:McGraw-Hill,2001
[11] Kleiber M.An extension to the UNIFAC group assignment for prediction of vapor-liquid equilibria of mixtures containing refrigerants[J].Fluid phase equilibria,1995,107(2):161-188
[12] Kang J W,Abildskov J,Gani R,et al.Estimation of mixture properties from first-and second-order group contributions with the UNIFAC model[J].Industrial & engineering chemistry research,2002,41(13):3260-3273
[13] 吴献忠,崔晓钰,李美玲.UNIFAC 基团贡献法预测混合制冷剂的气液相平衡[J].化工学报,2005,56(10):1832-1836
[14] Tanaka K,Higashi Y.Measurements of the surface tension for R290,R600a and R290/R600a mixture[J].International journal of refrigeration,2007,30(8):1368-1373
[15] Zhao G,Bi S,Wu J,et al.Surface tension of propane(R-290)+1,1-difluoroethane(R-152a)from(248 to 328)K[J].Journal of Chemical & Engineering Data,2010,55(9):3077-3079
[16] Heide R.The surface tension of HFC refrigerants and mixtures[J].International journal of refrigeration,1997,20(7):496-503
[17] Bi S,Zhao G,Wu J.Surface tension of pentafluoroethane+1,1-difluoroethane from(243 to 328)K[J].Fluid Phase Equilibria,2009,287(1):23-25
[18] Lin H,Duan Y Y.Surface Tension for the 1,1,1-Trifluoroethane(R-143a)+1,1,1,2-Tetrafluoroethane(R-134a)System[J].Journal of Chemical & Engineering Data,2004,49(2):372-375
[19] Duan Y Y,Lin H,Wang Z W.Surface tension measurements of difluoromethane(R-32)and the binary mixture difluoromethane(R-32)+1,1,1,2-tetrafluoroethane(R-134a)from(253 to 333)K[J].Journal of Chemical & Engineering Data,2003,48(4):1068-1072
[20] Duan Y Y,Lin H.Surface tension of the binary refrigerant mixture HFC-32+ HFC-125[J].Fluid phase equilibria,2003,213(1):89-98
[21] Froba A P,Leipertz A.Thermophysical properties of the refrigerant mixtures R410A and R407C from dynamic light scattering(DLS)[J].International journal of thermophysics,2003,24(5):1185-1206
[22] Bi S,Li X,Zhao G,et al.Surface tension of dimethyl ether+propane from 243 to 333K[J].Fluid Phase Equilibria,2010,298(1):150-153
[23] Okada M,Arima T,Hattori M,et al.Measurements of the surface tension of three refrigerants,R22,R115,and R502[J].Journal of Chemical and Engineering Data,1988,33(4):399-401
[24] Geller V Z,Zhelezny V P,Bivens D B,et al.Transport properties and surface tension of R23/116 azeotropic mixture[J].1996
[25] Lin H,Duan Y Y.Surface Tension of 1,1,1-Trifluoroethane(HFC-143a),1,1,1,2,3,3,3-Heptafluoropropane(HFC-227ea),and Their Binary Mixture HFC-143a/227ea[J].International Journal of Thermophysics,2003,24(6):1495-1508
[26] Okada M,Shibata T,Sato Y,et al.Surface tension of HFC refrigerant mixtures[J].International journal of thermophysics,1999,20(1):119-127
[27] Froba A P,Will S,Leipertz A.Thermophysical properties of binary and ternary fluid mixtures from dynamic light scattering[J].International journal of thermophysics,2001,22(5):1349-1368
[28] Tanaka K,Higashi Y.Measurements of the Surface Tension for the R290+R32 Mixture[J].Journal of Chemical & Engineering Data,2008,54(6):1656-1659
[29] Lin H,Duan Y Y.Surface Tension of Difluoromethane(R-32)+1,1,1,2,3,3,3-Heptafluoropropane(R-227ea)from(253 to 333)K[J].Journal of Chemical & Engineering Data,2005,50(1):182-186
Prediction of the Surface Tension of Refrigerant mixtures with Group Contribution Method
ZHAO Yifeng,ZHENG Xuelin
( Shanghai Maritime University,Shanghai 201306 )
Based on group contribution method,the surface tension of 15 kinds of binary and 4 kinds of ternary refrigerant mixtures are calculated for existing molar surface area models of pure component.The calculation accuracy of four molar surface area models are compared and the one proposed by Rasmussen shows a better prediction of the surface tension for both binary and ternary refrigerant mixtures.1193 and 100 surface tension date for binary and ternary refrigerant mixtures are collected from the literatures to check the reliability and accuracy of the applied method.The results show that total average deviations from Rasmussen′s model are 0.15mN·m-1and -0.03mN·m-1,respectively.Therefore,the group contribution method with Rasmussen′s surface model is suitable for the prediction of the surface tension of new environmentally friendly refrigerant mixtures.
Group contribution method;Surface tension;Refrigerant mixtures
2016-7-27
赵义逢(1990-),男,硕士研究生,研究方向:制冷与空调的节能和蓄能技术。Email:yifengzhao90@163.com
ISSN1005-9180(2017)02-032-06
TQ413.22 文献标示码:A
10.3969/J.ISSN.1005-9180.2017.02.007