李阳阳
摘 要 智能变电站是智能电网的重要组成部分,是变电站自动化发展的一个重要里程碑,对建立更加安全、稳定、高效的电网系统具有重要意义,其技术的先进性对推进智能电网的发展至关重要,本文主要论述了现阶段智能变电站的主要技术特点及现有技术近期的发展方向。
关键词 智能变电站;关键技术;发展
中图分类号 TM72 文献标识码 A 文章编号 2095-6363(2017)06-0033-01
智能电网被认为是21世纪电力系统的重大技术创新之一,而智能变电站是智能电网的重要基础和支撑。智能变电站是指,采用可靠、集成、先进、环保、低碳的智能设备,以全站信息数字化、通信平台网络化、信息共享标准化为基本要求,自动完成信息采集、测量、控制、保护、计量和监测等基本功能,并可根据需要支持电网实时自动控制、智能调节、在线分析决策、協同互动等高级功能的变电站[ 1 ]。
智能变电站的安全运行是电网安全运行的保障,而其技术的先进性对推进智能电网的发展至关重要。本文将对目前国内智能变电站现状及近期智能变电站的技术发展方向进行简单概述。
1 变电站自动化的发展历程
变电站的自动化发展历程经历了3个阶段。各个阶段的技术特点如下:
变电站自动化发展的第一阶段:1)面向功能的集中式远动终端装置+常规保护;2)常规继电器+二次接线+远动终端装置;3)遥控信息实现二遥或者四遥;4)保护装置采用硬接点连接;5)功能简单且系统连接复杂,系统整体性能指标较低。
变电站自动化发展的第二阶段:1)面向功能的分布式单元微机保护加微机测控装置模式;2)保护装置与测控装置分开独立配置;3)采用现场总线技术;4)采用通信管理单元;5)系统扩展性能较差。
变电站自动化发展的第三阶段:1)面向对象、面向间隔设计的分层分布式系统结构;2)采用以间隔为对象的保护测控装置;3)保护和监控网络独立组网,装置直接接入以太网;4)系统配置灵活、扩展性强。
2 智能化变电站关键技术
2.1 互感器技术
目前智能变电站为完成电压、电流就地采样数字化,主要采用“电子式互感器”或“常规互感器+合并单元”。
根据电子式互感器高压部分是否需要工作电源,电子式互感器可划分为有源式和无源式两大类。
相对于传统互感器,电子式互感器最为显著的优点是其高压侧与低压侧无电气连接,其大大简化了互感器的绝缘结构,提高了绝缘性能。
电子式互感器相对于常规互感器还具备暂态范围大、输出信号可直接输入保护设备和微机化计量、体积小、质量轻等优点。
但就近年来的实际运行经验而言,电子式互感器的故障率仍远高于传统电流互感器;温漂问题仍是无源型电流互感器的技术瓶颈,目前厂家为解决温漂问题,多采用实测温度对线性双折射和维尔德常数进行补偿,但此方法没有从根本上解决该问题。电子式互感器中采用了光学器件、电子器件等相对易耗元件,采集器故障率仍较高[ 2 ]。总而言之,由于电子式电流互感器仍处于应用初期的磨合阶段,有很多技术问题尚待解决与完善,常规电流互感器与其相比,在运行可靠性方面及价格仍具有很大优势。因此目前智能变电站仍广泛采用“常规互感器+合并单元”的方式。
电子式互感器完全取代“常规互感器+合并单元”是智能变电站的发展趋势,但目前急需解决如下技术瓶颈:1)无源型电子式互感器温漂问题;2)有源型电流互感器功能问题;3)长期可靠性问题。
2.2 网络结构
现阶段在逻辑上智能变电站网络可划分为三层网络结构,分别为站控层网络、间隔层网络和过程层网络。
2.2.1 站控层网络
站控层网络可传输MMS报文和GOOSE报文,实现站控层设备之间、站控层设备与间隔层设备之间的通信。
站控层网络采用双星型拓扑结构,采用双网双工冗余网络的运行方式,可满足网络无缝切换功能。站控层网络采用MMS、GOOSE、SNTP时间同步三网合一、共网运行。
2.2.2 间隔层网络
间隔层网络可传输MMS报文和GOOSE报文,实现间隔层设备与本间隔其他设备、与其他间隔设备之间的通信。
目前智能变电站间隔层网络广泛采用双重化星形以太网络,间隔层设备通过两个相互独立的以太网控制器接入双重化的站控层网络。
2.2.3 过程层网络
过程层网络传输GOOSE报文及SV报文,完成过程层设备之间、间隔层设备之间、过程层与间隔层设备之间的通信。
目前智能变电站各电压等级过程层网络通常采用如下配置方案:500kV过程层SV、GOOSE网络采用星形双网结构独立配置,220kV过程层SV与GOOSE共网传输、双网配置,110kV过程层SV与GOOSE网共网传输、单网配置,35kV、10kV不配置独立过程层网络[ 3 ]。
未来随着二次设备就地下放及一次、二次设备完全整合,智能变电站的可将现阶段的三层设备两层网络结构优化为两侧设备一层网络结构。
2.3 一次设备在线监测
智能变电站在线监测系统是变电站综合监测、故障诊断的在线动态系统,可为智能变电站提供在线监测与故障诊断的整体解决方案。
智能变电站在线监测系统可对变压器绕组温度及负荷、变压器油中气体及水含量、变压器绝缘、变压器辅助设备(油泵、有载调压开关、冷却设备、继电器)、变压器局放、GIS及断路器中SF6气体含量、断路器动作特性、设备绝缘(电流互感器、容性电压互感器、避雷器)、电缆温度和电缆局放等运行特性进行综合监测。
智能变电站在线监测系统可靠性高、互换性好、准确性高,智能变电站在线监测系统是采用标准的结构方式、数据格式、通讯规约等全面集成的,而不是现有在线监测系统在后台监测软件层面上的简单集成。智能变电站在线监测系统采用基于多信息融合技术的综合故障诊断模型,结合运行参数和结构特性、历史运行状态及环境因素,依据获得的电力设备状态信息,对电力设备运行状态及剩余运行寿命进行评估。对已经发生的故障进行分析、对正在发生的故障进行判断、对可能发生的故障进行预测,明确故障的原因、属性、类型、性质,指出故障发展的后果和趋势,有效地提出故障发展和根除故障的对策,达到预防和避免电力设备事故发生、保证运行设备安全、可靠运行的目的。
但目前智能变电站在线监测技术,还无法实现囊括所有设备全面在线监测的可能性,在线监测系统一体化,并由自动化系统集成是未来一次设备在线监测系统的发展方向。
3 结论
2009年5月,国家电网在全国共选取了47个新建变电站作为智能变电站试点工程,试点工程在原理研究、设备研制、设计优化、标准制定等方面取得了许多创新成果[4]。但现阶段我国智能变电站建设仍处于技术的储备期和快速发展期,电网发展方式的转变、管理模式的创新对智能变电站提出了新的要求,未来智能变电站应以“结构布局合理、系统高度集成、技术装备先进、经济节能环保”为建设目标。总结现有智能变电站的技术特点,加强技术研发是推荐智能电网建设的关键。
参考文献
[1]李瑞生,李燕斌.智能变电站功能架构及设计原则[J].电力系统保护与控制,2010,38(21):24.
[2]王莉,韩海生.智能变电站自动化系统关键技术分析[J].电力科技,2017(21):214.
[3]国家电网公司.国家电网公司输变电工程通用设计:110(66)-750kV智能变电站部分(2011年版)[M].北京:中国电力出版社,2010.
[4]宋璇坤,沈江等.新一代智能变电站感念设计[J].电力建设,2013,34(6):11.