彭弋倪 +陈旸 +李石磊
摘要:岩石风化是全球碳循環的重要碳汇过程。以辽河流域为研究对象,采用水化学与元素地球化学方法,从河流水化学角度对整个辽河流域的岩石风化过程进行研究。在对流域干流和主要支流河水以及水库水的水化学特征进行统计分析后,通过正演方法计算发现,辽河流域河水化学组成主要由岩石风化主导,岩石风化以碳酸盐岩风化为主,但受到人类活动(畜牧业、农业、工业等)的影响很大。辽河流域碳酸盐岩风化速率为每年12.99 t·km-2,硅酸盐岩风化速率为每年2.27 t·km-2,岩石风化速率小于大陆河流平均水平。辽河流域碳酸盐岩风化CO2消耗通量为每年14.66×109 mol,硅酸盐岩风化CO2消耗通量为每年6.40×109 mol,都小于世界大部分大陆河流。
关键词:地表风化;水化学;元素地球化学;正演方法;人类活动;风化速率;CO2消耗通量;辽河流域
中图分类号:P594文献标志码:A
Abstract: Rock weathering is an important carbon sink process in global carbon cycle. The rock weathering process in Liaohe river watershed was studied with the methods of water chemistry and element geochemistry. The hydrochemical characteristics of main river and reservoir waters in Liaohe river watershed were analyzed. Based on the forward method model, the chemical composition of river water in Liaohe river watershed is dominated by rock weathering, which is mainly affected by carbonate weathering and human activities(livestock breeding, agriculture, industry, etc.). The carbonate weathering rate in Liaohe river watershed is 12.99 t·km-2 per year, The silicate weathering rate is 2.27 t·km-2 per year, and the rock weathering rate is less than the average of global main river watersheds. The CO2 consumption by carbonate weathering is 14.66×109 mol per year, and that by silicate weathering is 6.40×109 mol per year, which both are lower than that of global most river watersheds.
Key words: weathering; water chemistry; element geochemistry; forward modeling method; human activity; weathering rate; flux of CO2 consumption; Liaohe river watershed
0引言
岩石风化和有机碳埋藏是全球碳循环的两个主要消耗大气CO2(即碳汇)过程,并且能在短尺度(100 ka之内)到长尺度(超过1 Ma)上对地球环境产生影响[15]。在短尺度上,所有岩石风化都有碳汇作用;而在长尺度上,只有硅酸盐岩风化消耗大气CO2形成HCO-3,并通过河流运输到海洋,形成CaCO3沉积,由此可以调节全球大气CO2含量与全球气候[1]。流域水文地球化学性质可以反映流域岩石或土壤的化学风化特征,因此,河流地球化学研究的主要目的之一就是估算现今大陆无机化学和有机化学剥蚀状况以及它们相应的大气CO2消耗[4,68]。
自从Caillardet等的工作[4]之后,许多研究开始关注河流地球化学。前人主要采用两种方法:一是在单一岩性小流域的研究中,重点在于风化控制因素影响研究,比如岩性、气候等[9];二是对多岩性大流域研究,主要关注于风化对碳循环的贡献等[10]。到目前为止,全球范围内有许多学者对大河流域的化学风化与其碳汇效应进行了研究[1,4,1011]。比如,世界第二长河流亚马逊河与美国最大河流密西西比河的CO2消耗速率分别为每年50949×103、128.71×103 mol·km-2[11]。而中国目前的研究主要集中在长江、黄河等发源于青藏高原的河流[1223],黄河流域CO2消耗速率为每年144×103 mol·km-2[13]或130.75×103 mol·km-2 [21],长江流域在汶川地震后溶质通量显著增加[22];对于其他区域河流的研究则关注较少[2434]。
辽河作为中国七大河流之一,其整个流域的水化学特征、成分来源与岩石风化速率以及通量等并没有进行针对性地、完整地、详细地研究。因此,本文选取了辽河作为研究对象,通过测定水样的主要阴、阳离子的浓度、摩尔分数、质量浓度来研究辽河流域河水的化学成分特征与来源,岩石风化速率以及大气CO2消耗速率与通量。
1研究区概况
辽河位于中国东北地区南部(图1),全长1 345 km,流域面积为219×104 km2。辽河发源于河北省平泉市七老图山脉的光头山,流经河北、内蒙古、吉林、辽宁等省区,最后注入辽东湾。辽河流域多年平均气温4 ℃~9 ℃,年平均降雨量350~1 000 mm,自东南向西北递减。
辽河流域岩石分布(图2)种类复杂。西辽河上游主要为花岗岩类等中酸性岩石以及火山碎屑岩,其中在内蒙古自治区赤峰市西北部出露大面积玄武岩;东辽河上游主要为花岗岩类岩石;东、西辽河中下游及汇合后辽河主要为第四纪沉积物。
2样品采集与分析
2014年6月,笔者在辽河全流域各主要支流汇流处采集了干流与支流的样品,另外在主要水库都进行了水样采集(图2)。每件样品用预先酸洗清洁的聚乙烯瓶采集300 mL,并在现场测定了水温、pH值及HCO-3浓度。水样在实验室经过孔径0.22 μm醋酸纤维膜过滤后,将所得清液分成3份:一份在南京大学表生地球化学研究所等离子发射光谱仪(ICPAES)中测定主要阳离子(Ca2+、K+、Mg2+、Na+、Sr2+)以及Si溶解量,误差为5%;第二份在南京大学表生地球化学教育部重点实验室离子色谱仪(ICS)中测定主要阴离子(F-、Cl-、NO-3、SO2-4)浓度,误差为5%;第三份留下冷藏保存。
3分析方法
4结果分析与讨论
4.1水样离子组成
辽河流域水化学参数和主量元素组成显示,河水pH值在7.36~9.71之间,水体偏弱碱性(表1)。流域水化学组成变化很大,总溶解固体(TDS)在11787~1 69580 mg·L-1之间,平均值为53370 mg·L-1,比长江[46]、黄河[47]、恒河[35]、雅鲁藏布江[35]等大部分青藏高原发源河流以及世界河流平均值[4]都要高。辽河流域干流总溶解固体在空间上从上游到下游呈递减的趋势,这主要是因为西辽河中上游区域气候干旱(年降雨量低于400 mm)、蒸发量大形成浓缩作用。
从图3可以看出,河水主要阳离子中浓度最高的是Ca2+和Na+,Mg2+次之,K+最低,主要阴离子中HCO-3浓度高于Cl-,SO2-4高于溶解总Si。阳离子
三角图[图3(a)]显示大部分水样的阳离子组成大致与总体情况相同,而结合离子数据可看到西辽河河水样品中出现了以K+、Na+为主,Mg2+次之,而Ca2+浓度非常低的情况。这些水样可能处于干旱气候带(年降雨量低于400 mm),因蒸发量大受到蒸发结晶作用的控制[45],造成Ca2+过饱和而大量沉淀,从而导致河水中Ca2+浓度很低。但是,有流经碳酸盐岩出露区域的水样Ca2+浓度相对较高。
4.2水样离子浓度相关性
从图4可以看出:河水溶质来源与硅酸盐岩风化、碳酸盐岩风化有关,其中有流经碳酸盐岩出露区域的水样最靠近碳酸盐岩风化端元;少量水样数据落在了硅酸盐岩风化端元、碳酸盐岩风化端元及蒸发岩风化端元三者圈定范围之外c(Ca2+)/c(Na+)值较小的区域上,可能也是因为这些水样处于干旱气候带,蒸发量大,受到蒸发结晶作用的控制。
碳酸盐岩风化端元、硅酸盐岩风化端元、蒸发岩风化端元数据引自文献[4]、[11]、[48]~[50]
从图5(a)可以看出,落在(e(Ca2+)+e(Mg2+))/(e(HCO-3)+e(SO2-4))值接近1的部分水样表明碳酸盐溶解是硫酸和碳酸两者共同作用的结果,而e(HCO-3)+e(SO2-4)值偏离部分代表了碳酸盐溶解以外的来源可能是钾钠硅酸盐风化。其中,干旱气候区域的水样相对偏离很大,而有流经碳酸盐岩出露区域的水样基本落在(e(Ca2+)+e(Mg2+))/(e(HCO-3)+e(SO2-4))值接近1的位置。图5(b)中的碳酸溶解反应线[36]代表了碳酸盐在碳酸溶解时的趋势线,辽河流域的水样(e(Ca2+)+e(Mg2+))/e(HCO-3)值在028~361之间,平均值为1.27(>100),且与碳酸溶解反应线的相关性不太强,而e(SO2-4)/e(HCO-3)值在0.02~0.70之间,平均值为0.27,再次表明对于碳酸盐的溶解除了碳酸之外,硫酸的作用也不可忽视。
4.3端元分析
除去几个气候干旱区域水样,利用式(2)~(11)可计算出各端元对河水Ca2+、K+、Mg2+、Na+的贡献率(表2)及各端元对水样阳离子总溶解量组成的贡献分布(图6)。
对于Ca2+和Mg2+来说,最大贡献都来自碳酸盐岩风化(76.87%和84.08%),第二大贡献也都是硅酸盐岩风化(18.53%和11.16%)。硅酸盐岩风化对K+的贡献最大(8467%),其次是大气输入(1533%)。与K+相同,Na+也主要来源于硅酸盐岩风化(57.49%);但与K+不同的是,Na+受到人类活动影响很大(38.96%)。
辽河流域以碳酸盐岩风化为主(746%~8209%),贡献最大水样(样品46)位于内蒙古自治区赤峰市境内西辽河干流上游。对于整个流域来说(样品55),碳酸盐岩风化贡献为6574%。其次是硅酸盐岩风化(6.55%~8398%),贡献最大水样位于吉林省四平市境内东辽河干流中上游旁的小溪流(样品20)。对于整个流域,硅酸盐岩风化贡献为1769%。在辽河流域(特别是中下游区域)受到人类活动的影响较大(000%~2608%),最大贡献水样位于辽宁省新民市西辽河支流蒲河(样品01),即城市群的中心,对于流域贡献为1090%。大气输入的贡献较小(175%~887%),对流域贡献为442%。与大气输入相比,蒸发岩风化贡献更小(049%~249%),對流域贡献为124%,流域中Na+与Cl-浓度较高可能来源于人类活动的影响。
样品47、46、41、32采自西辽河干流,样品排列顺序为从上游到下游;样品15、16、17、19、21采自东辽河干流,样品排列顺序为从上游到下游;样品27、08、06、02、55、49采自东、西辽河汇合后干流,样品排列顺序为从上游到下游;样品48采自老哈河上游;样品30采自铁岭康平支流;样品28采自铁岭齐家屯支流;样品20采自东辽河旁小溪流;样品23采自招苏台河上游;样品25采自招苏台河下游;样品24采自二道河;样品14采自开原平岗支流;样品13采自清河上游;样品11采自清河下游;样品10采自柴河;样品09采自泛河;样品07采自拉马河;样品05采自秀水河;样品04采自养息牧河;样品03采自柳河;样品01采自蒲河;样品53采自本溪市支流;样品52采自太子河;样品50采自盘锦史家村支流;样品18、29、51、54采自浑河
4.4巖石化学风化速率与碳汇计算
本次研究所得岩石风化与碳汇数据是前人研究[24]的十几到数十倍,其主要原因是前人研究中采用的多年平均径流量与流域面积包括西辽河。本次数据更符合实际速率与通量。辽河流域碳酸盐岩风化速率为每年1299 t·km-2,硅酸盐岩风化速率为每年227 t·km-2,即岩石风化速率为每年1526 t·km-2,都远小于全球平均水平(分别为每年26 t·km-2、24 t·km-2)[4],并且低于大部分世界大河流域,仅仅高于黄河、印度河、一部分西伯利亚河、大部分非洲大河等。其中辽河流域碳酸盐岩风化速率与大陆河流平均值相当,高于大部分非洲、南美洲、西伯利亚大河,黄河,印度河等,但远小于长江、湄公河、雅鲁藏布江、密西西比河、莱茵河等大河。而辽河流域硅酸盐岩风化速率是大陆河流平均值的0.4倍,与非洲尼日尔河相当,但小于大部分世界大河,特别是发源于青藏高原的河流。
辽河流域碳酸盐岩风化CO2消耗通量为每年14.66×109 mol,小于大部分大陆河流;硅酸盐岩CO2消耗通量为每年6.40×109 mol,依然远小于世界大部分大河。流域岩石风化CO2消耗速率为每年254×105 mol·km-2,大致与大陆河流平均值(每年2.46×105 mol·km-2[4])相当。碳酸盐岩CO2消耗速率为每年1.77×105 mol·km-2,大于大陆河流平均值,但发源于青藏高原的河流中也仅高于印度河与黄河;硅酸盐岩CO2消耗速率为每年0.77×105 mol·km-2,接近大陆河流平均值的0.9倍,与发源于青藏高原的河流相比较,辽河流域硅酸盐岩CO2消耗速率仅高于印度河与长江,比其他河流要小得多。
图7显示出径流深度与包括辽河流域在内的世界大河流域硅酸盐岩风化速率之间具有很好的正相关性(判定系数为0.611)。这种相关性虽不能证明径流深度与硅酸盐岩风化速率之间的逻辑关系,但可直观地看出相比较大陆河流平均值及部分其他大河流域,辽河流域径流深度与硅酸盐岩风化速率都处于中等偏下水平。
5结语
(1)辽河流域水体偏碱性,河水化学成分以Ca2+、Na+及HCO-3为主,在整个空间上变化很大,总溶解固体平均值高于大部分发源于青藏高原的河流。
(2)辽河流域河水化学组成主要以碳酸盐岩风化端元贡献为主。整个流域岩石风化贡献为8343%,其中碳酸盐岩风化端元为6574%,硅酸盐岩风化端元为1769%,人类活动贡献达到1090%,这说明其受到人类活动(畜牧业、工业、农业、城市活动等)影响很大。
(3)辽河流域碳酸盐岩风化速率为每年12.99 mol·km-2,大致与大陆河流平均值相当;流域硅酸盐岩风化速率为每年2.27 mol·km-2,是大陆河流平均值的0.4倍。岩石风化速率为每年15.26 mol·km-2,接近大陆河流平均水平。流域岩石风化CO2消耗速率为每年2.54×105 mol·km-2,大致与大陆河流平均值相当。碳酸盐岩风化CO2消耗速率为每年1.77×105 mol·km-2,硅酸盐岩风化CO2消耗速率(每年0.77×105 mol·km-2)接近大陆河流平均值的0.9倍,相比较于大部分发源于青藏高原的河流要小,但高于印度河与长江。岩石风化CO2消耗通量为每年21.06×109 mol,其中碳酸盐岩风化CO2消耗通量为每年14.66×109 mol,硅酸盐岩风化CO2消耗通量为每年6.40×109 mol,都小于世界大部分大陆河流。
(4)辽河流域位于构造稳定区域,物理剥蚀较弱,因此,岩石风化速率及相应碳汇通量也较小。对于这种构造稳定、物理剥蚀作用很弱的区域,岩石风化及碳汇作用虽不如发源于青藏高原的河流显著,但是辽河流域约70%被泛滥平原覆盖这一特点值得进一步对其泛滥平原的风化特征与机制进行研究。
南京大学地球科学与工程学院孟先强博士与曹少华博士在样品采集中提供了帮助,李来峰硕士在实验分析中给予了帮助,在此一并致谢。
参考文献:
References:
[1]BERNER R A,LASAGA A C,GARRELS R M.The Carbonatesilicate Geochemical Cycle and Its Effect on Atmospheric Carbondioxide over the Past 100 Million Years[J].American Journal of Science,1983,283(7):641683.
[2]FRANCELANORD C,DERRY L A.Organic Carbon Burial Forcing of the Carbon Cycle from Himalayan Erosion[J].Nature,1997,390:6567.
[3]LUDWIG W,AMIOTTESUCHET P,MUNHOVEN G,et al.Atmospheric CO2 Consumption by Continental Erosion:Presentday Controls and Implications for the Last Glacial Maximum[J].Global and Planetary Change,1998,16/17:107120.
[4]GAILLARDET J,DUPRE B,LOUVAT P,et al.Global Silicate Weathering and CO2 Consumption Rates Deduced from the Chemistry of Large Rivers[J].Chemical Geology,1999,159(1/2/3/4):330.
[5]COLE J J,PRAIRIE Y T,CARACO N F,et al.Plumbing the Global Carbon Cycle:Integrating Inland Waters into the Terrestrial Carbon Budget[J].Ecosystems,2007,10(1):172185.
[6]HU M H,STALLARD R F,EDMOND J M.Major Ion Chemistry of Some Large Chinese Rivers[J].Nature,1982,298:550553.
[7]STALLARD R F,EDMOND J M.Geochemistry of Amazon:2.The Influence of Geology and Weathering Environment on the Dissolved Load[J].Journal of Geophysical Research Oceans,1983,88:96719688.
[8]RYU J S,LEE K S,CHANG H W,et al.Chemical Weathering of Carbonates and Silicates in the Han River Basin,South Korea[J].Chemical Geology,2008,247(1/2):6680.
[9]WEST A J,GALY A,BICKLE M.Tectonic and Climatic Controls on Silicate Weathering[J].Earth and Planetary Science Letters,2005,235(1/2):211228.
[10]AMIOTTESUCHET P,PROBST J L,LUDWIG W.Worldwide Distribution of Continental Rock Lithology:Implications for the Atmospheric/Soil CO2 Uptake by Continental Weathering and Alkalinity River Transport to the Oceans[J].Global Biogeochemical Cycles,2003,17(2):1038.
[11]MEYBECK M.Global Chemical Weathering of Surficial Rocks Estimated from River Dissolved Loads[J].American Journal of Science,1987,287(5):401428.
[12]陳静生,夏星辉,张利田,等.长江、黄河、松花江60~80年代水质变化趋势与社会经济发展的关系[J].环境科学学报,1999,19(5):500505.
CHEN Jingsheng,XIA Xinghui,ZHANG Litian,et al.Relationship Between Water Quality Changes in the Yangtze,Yellow and Songhua Rivers and the Economic Development in the River Basins[J].Acta Scientiae Circumstantiae,1999,19(5):500505.
[13]李晶莹,张经.黄河流域化学风化作用与大气CO2的消耗[J].海洋地质与第四纪地质,2003,23(2):4349.
LI Jingying,ZHANG Jing.Chemical Weathering Processes and Atmospheric CO2 Consumption in the Yellow River Drainage Basin[J].Marine Geology and Quaternary Geology,2003,23(2):4349.
[14]赵继昌,耿冬青,彭建华,等.长江河源区的河水主要元素与Sr同位素来源[J].水文地质工程地质,2003,30(2):8993.
ZHAO Jichang,GENG Dongqing,PENG Jianhua,et al.Origin of Major Elements and Sr Isotope for River Water in Yangtze River Source Area[J].Hydrogeology and Engineering Geology,2003,30(2):8993.
[15]秦建华,冉敬,杜谷.青藏高原东部长江流域盆地陆地化学风化研究[J].沉积与特提斯地质,2007,27(4):16.
QIN Jianhua,RAN Jing,DU Gu.Subaerial Chemical Weathering in the Changjiang Drainage Systems on Eastern QinghaiXizang Plateau[J].Sedimentary Geology and Tethyan Geology,2007,27(4):16.
[16]翟大兴,杨忠芳,柳青青,等.鄱阳湖流域岩石化学风化特征及CO2消耗量估算[J].地学前缘,2011,18(6):169181.
ZHAI Daxing,YANG Zhongfang,LIU Qingqing,et al.Chemical Weathering and CO2 Consumptions in Poyang Lake Basin[J].Earth Science Frontiers,2011,18(6):169181.
[17]张东,黄兴宇,李成杰.硫和氧同位素示踪黄河及支流河水硫酸盐来源[J].水科学进展,2013,24(3):418426.
ZHANG Dong,HUANG Xingyu,LI Chengjie.Sources of Riverine Sulfate in Yellow River and Its Tributaries Determined by Sulfur and Oxygen Isotopes[J].Advances in Water Science,2013,24(3):418426.
[18]李小倩,刘运德,周爱国,等.长江干流丰水期河水硫酸盐同位素组成特征及其来源解析[J].地球科学,2014,39(11):15471554.
LI Xiaoqian,LIU Yunde,ZHOU Aiguo,et al.Sulfur and Oxygen Isotope Compositions of Dissolved Sulfate in the Yangtze River During High Water Period and Its Sulfate Source Tracing[J].Earth Science,2014,39(11):15471554.
[19]罗超,郑洪波,吴卫华,等.长江河水87Sr/86Sr值的季节性变化及其指示意义:以长江大通站为例[J].地球科学进展,2014,29(7):835843.
LUO Chao,ZHENG Hongbo,WU Weihua,et al.Temporal Variation in Sr and 87Sr/86Sr of Yangtze River:An Example from Datong Hydrological Station[J].Advances in Earth Science,2014,29(7):835843.
[20]王健,王亮,张龙军.地下水灌溉回水对黄河流域化学风化CO2消耗估算的影响[J].中国海洋大学学报,2014,44(9):8997.
WANG Jian,WANG Liang,ZHANG Longjun.Contribution of Returned Irrigation Groundwater to Chemical Weathering CO2 Consumption in the Yellow River Basin[J].Periodical of Ocean University of China,2014,44(9):8997.
[21]WANG L,ZHANG L J, CAI W J,et al. Consumption of Atmospheric CO2 via Chemical Weathering in the Yellow River Basin:The QinghaiTibet Plateau Is the Main Contributor to the High Dissolved Inorganic Carbon in the Yellow River[J].Chemical Geology,2016,430:3444.
[22]JIN Z D,WEST A J,ZHANG F,et al.Seismically Enhanced Solute Fluxes in the Yangtze River Headwaters Following the A.D. 2008 Wenchuan Earthquake[J].Geology,2015,44(1):4750.
[23]DAS P,SARMA K P,JHA P K,et al.Understanding the Cyclicity of Chemical Weathering and Associated CO2 Consumption in the Brahmaputra River Basin (India):The Role of Major Rivers in Climate Change Mitigation Perspective[J].Aquatic Geochemistry,2016,22(3):225251.
[24]吳卫华,郑洪波,杨杰东,等.中国河流流域化学风化和全球碳循环[J].第四纪研究,2011,31(3):397407.
WU Weihua,ZHENG Hongbo,YANG Jiedong,et al.Chemical Weathering of Large River Catchments in China and the Global Carbon Cycle[J].Quaternary Sciences,2011,31(3):397407.
[25]刘宝剑,赵志琦,李思亮,等.寒温带流域硅酸盐岩的风化特征:以嫩江为例[J].生态学杂志,2013,32(4):10061016.
LIU Baojian,ZHAO Zhiqi,LI Siliang,et al.Characteristics of Silicate Rock Weathering in Cold Temperate Zone:A Case Study of Nenjiang River,China[J].Chinese Journal of Ecology,2013,32(4):10061016.
[26]王冬.松花江典型小流域水化学的时空分异研究[J].西南师范大学学报:自然科学版,2013,38(11):142149.
WANG Dong.On Spatiotemporal Variation of Water Chemistry in Typical Watershed of Songhua River[J].Journal of Southwest China Normal University:Natural Science Edition,2013,38(11):142149.
[27]覃小群,蒋忠诚,张连凯,等.珠江流域碳酸盐岩与硅酸盐岩风化对大气CO2汇的效应[J].地质通报,2015,34(9):17491757.
QIN Xiaoqun,JIANG Zhongcheng,ZHANG Liankai,et al.The Difference of the Weathering Rate Between Carbonate Rocks and Silicate Rocks and Its Effects on the Atmospheric CO2 Consumption in the Pearl River Basin[J].Geological Bulletin of China,2015,34(9):17491757.
[28]于奭,孙平安,杜文越,等.人类活动影响下水化学特征的影响:以西江中上游流域为例[J].环境科学,2015,36(1):7279.
YU Shi,SUN Pingan,DU Wenyue,et al.Effect of Hydrochemistry Characteristics Under Impact of Human Activity:A Case Study in the Upper Reaches of the Xijiang River Basin[J].Environmental Science,2015,36(1):7279.
[29]黄露,刘丛强,CHETELAT B,等.中国西南三江流域风化的季节性变化特征[J].地球与环境,2015,43(5):512521.
HUANG Lu,LIU Congqiang,CHETELAT B,et al.Seasonal Variation Characteristics of Weathering in the Three Rivers Basin,Southwestern China[J].Earth and Environment,2015,43(5):512521.
[30]原雅琼,何师意,于奭,等.柳江流域柳州断面水化学特征及无机碳汇通量分析[J].环境科学,2015,36(7):24372445.
YUAN Yaqiong,HE Shiyi,YU Shi,et al.Hydrochemical Characteristics and the Dissolved Inorganic Carbon Flux in Liuzhou Section of Liujiang Basin[J].Environmental Science,2015,36(7):24372445.
[31]吕婕梅,安艳玲,吴起鑫,等.贵州清水江流域丰水期水化学特征及离子来源分析[J].环境科学,2015,36(5):15651572.
LU Jiemei,AN Yanling,WU Qixin,et al.Hydrochemical Characteristics and Sources of Qingshuijiang River Basin at Wet Season in Guizhou Province[J].Environmental Science,2015,36(5):15651572.
[32]孙海龙,刘再華,杨睿,等.珠江流域水化学组成的时空变化特征及对岩石风化碳汇估算的意义[J].地球与环境,2017,45(1):5765.
SUN Hailong,LIU Zaihua,YANG Rui,et al.Spatial and Seasonal Variations of Hydrochemistry of the Peral River and Implications for Estimating the Rock Weatheringrelated Carbon Sink[J].Earth and Environment,2017,45(1):5765.
[33]吕婕梅,安艳玲,吴起鑫,等.清水江流域岩石风化特征及其碳汇效应[J].环境科学,2016,37(12):46714679.
LU Jiemei,AN Yanling,WU Qixin,et al.Rock Weathering Characteristics and the Atmospheric Carbon Sink in the Chemical Weathering Processes of Qingshuijiang River Basin[J].Environmental Science,2016,37(12):46714679.
[34]何若雪,孙平安,何师意,等.漓江流域中下游无机碳通量动态变化及影响因素[J].中国岩溶,2017,36(1):109118.
HE Ruoxue,SUN Pingan,HE Shiyi,et al.Variation of Inorganic Carbon Flux in the Middle and Downstream of the Lijiang River[J].Carsologica Sinica,2017,36(1):109118.
[35]GALY A,FRANCELANORD C.Weathering Processes in the GangesBrahmaputra Basin and the Riverine Alkalinity Budget[J].Chemical Geology,1999,159(1/2/3/4):3160.
[36]LI S Y,LU X X,BUSH R T.Chemical Weathering and CO2 Consumption in the Lower Mekong River[J].Science of the Total Environment,2014,472:162177.
[37]HAN G L,TANG Y,XU Z F.Fluvial Geochemistry of Rivers Draining Karst Terrain in Southwest China[J].Journal of Asian Earth Sciences,2010,38(1/2):6575.
[38]XU Z F,LIU C Q.Water Geochemistry of the Xijiang Basin Rivers,South China:Chemical Weathering and CO2 Consumption[J].Applied Geochemistry,2010,25(10):16031614.
[39]LI Y,YU X L,CHENG H B,et al.Chemical Characteristics of Precipitation at Three Chinese Regional Background Stations from 2006 to 2007[J].Atmospheric Research,2010,96(1):173183.
[40]赵岩.鞍山市近四年降水组分分析[J].中国化工贸易,2015(8):196.
ZHAO Yan.Analysis of Precipitation Composition in Anshan in Recent Four Years[J].China Chemical Trade,2015(8):196.
[41]刘厚凤,汪凯庆.辽宁农村代表区域降水离子组成及与气态污染物相关性[J].气象与环境学报,2011,27(2):6268.
LIU Houfeng,WANG Kaiqing.Ion Composition in Precipitation and Its Correlation with Gaseous Pollutants in Representative Rural Area in Liaoning Province[J].Journal of Meteorology and Environment,2011,27(2):6268.
[42]LI S L,CHETELAT B,YUE F J,et al.Chemical Weathering Processes in the Yalong River Draining the Eastern Tibetan Plateau,China[J].Journal of Asian Earth Sciences,2014,88:7484.
[43]CHETELAT B,LIU C Q,ZHAO Z Q,et al.Geochemistry of the Dissolved Load of the Changjiang Basin Rivers:Anthropogenic Impacts and Chemical Weathering[J].Geochimica et Cosmochimica Acta,2008,72(17):42544277.
[44]MOON S,HUH Y,QIN J H,et al.Chemical Weathering in the Hong(Red) River Basin:Rates of Silicate Weathering and Their Controlling Factors[J].Geochimica et Cosmochimica Acta,2007,71(6):14111430.
[45]朱秉啟,杨小平.塔克拉玛干沙漠天然水体的化学特征及其成因[J].科学通报,2007,52(13):15611566.
ZHU Bingqi,YANG Xiaoping.The Ion Chemistry of Surface and Ground Waters in the Taklimakan Desert of Tarim Basin,Western China[J].Chinese Science Bulletin,2007,52(13):15611566.
[46]CHEN J S,WANG F Y,XIA X H,et al.Major Element Chemistry of the Changjiang(Yangtze River)[J].Chemical Geology,2002,187(3/4):231255.
[47]CHEN J S,WANG F Y,MEYBECK M,et al.Spatial and Temporal Analysis of Water Chemistry Records(19582000) in the Huanghe(Yellow River) Basin[J].Global Biogeochemical Cycles,2005,DOI:10.1029/2004GB002325.
[48]REEDER S W.Hydrogeochemistry of the Surface Waters of the Mackenzie River Drainage Basin,Canada:1 Factors Controlling Inorganic Compositions[J].Geochimica et Cosmochimica Acta,1972,36(8):825865.
[49]EDMOND J M,PALMER M R,MEASURES C I,et al.The Fluvial Geochemistry and Denudation Rate of Guyana Shield in Venezuela,Colombia,and Brazi[J].Geochimica et Cosmochimica Acta,1994,59(16):33013325.
[50]WHITE A F,BLUM A E.Effects of Climate on Chemical Weathering in Watersheds[J].Geochimica et Cosmochimica Acta,1995,59(9):17291747.
[51]《中国水利百科全书》编辑委员会.中国水利百科全书[M].2版.北京:中国水利水电出版社,2006.
The Editorial Board of China Water Conservancy Encyclopedia.China Water Conservancy Encyclopedia[M].2nd ed.Beijing:China Water and Power Press,2006.
[52]梁团豪,谢新民,崔新颖,等.西辽河流域水资源合理配置研究[J].中国水利水电科学研究院学报,2009,7(4):291295.
LIANG Tuanhao,XIE Xinmin,CUI Xinying,et al.Study on Water Resources Rational Allocation in West Liao River Basin[J].Journal of China Institute of Water Resources and Hydropower Research,2009,7(4):291295.
[53]PANDE K,SARIN M M,TRIVEDI J R,et al.The Indus River System(IndiaPakistan):Majorion Chemistry,Uranium and Strontium Isotopes[J].Chemical Geology,1994,116(3/4):245259.