周 洁, 王根厚, 张 莉
(1.中国地质大学 地球科学与资源学院,北京 100083;2.地球系统科学,延世大学,韩国 首尔 120749)
滇西小龙潭矿区始新世岩浆岩的成因及其地质意义
周 洁1, 王根厚1, 张 莉2
(1.中国地质大学 地球科学与资源学院,北京 100083;2.地球系统科学,延世大学,韩国 首尔 120749)
云南省宾川县小龙潭矿区是一个大型斑岩型铜多金属矿床,铜矿体主要产于斑岩体及其外围接触带,矿化与斑岩体密切相关。对矿区主要侵入岩开展全岩地球化学、锆石LA-ICP-MS U-Pb年代学和Hf同位素研究,获得含矿二长斑岩的206Pb/238U加权平均年龄为(35.98±0.16) Ma,属于始新世岩浆活动的产物。斑岩体SiO2质量分数变化较大(64.81%~69.6%),高钾(4.36%~10.95%)和碱(Na2O+K2O>8%),A/CNK为0.99~1.36,属高钾的碱性—过碱性、准铝质—过铝质斑岩;富集大离子亲石元素(K、Rb、Ba、Sr等)、亏损高场强元素(Ta、Nb、P、Ti等),富集轻稀土元素、亏损重稀土元素;虽被划入富碱侵入岩及A型花岗岩,但具C型埃达克岩地球化学特征。斑岩体锆石εHf(t)值为-26.93~1.66,地壳模式年龄为1 009~4 141 Ma,显示斑岩体来源于下地壳物质的部分熔融,并有幔源物质的加入。结合区域演化特征,认为小龙潭斑岩体形成于造山期后的拉张环境,陆陆碰撞挤压后应力松弛,岩浆沿断裂及次级断裂上侵,进而形成铜多金属矿床。
云南小龙潭;始新世;斑岩;锆石U-Pb;LA-MC-ICP-MS
三江地区富碱侵入岩带(亦称哀牢山—金沙江富碱侵入岩带)是世界上著名的富碱侵入岩带之一,也是中国最重要的有色金属和贵金属多金属成矿带之一,区内构造岩浆活动频繁而强烈,成矿条件优越,找矿潜力巨大,对富碱斑岩成因机制及其与成矿的关系研究受到了密切关注[1-5]。关于三江地区出露的与成矿相关的富碱侵入岩体的成因类型一直存在争议:一种观点认为该区富碱斑岩体为A 型花岗岩,其岩石类型、元素地球化学特征及构造背景与世界A型花岗岩极为相似[6-11],认为其形成主要是在非造山的环境下以干熔融为主[12-13];另一种观点认为该区斑岩体具C型埃达克岩特征,来源于加厚的下地壳底部[14-16]。小龙潭矿区斑岩体(成矿母岩)属马厂箐-小龙潭-华坪北东向斑岩亚带,是金沙江-哀牢山喜马拉雅期富碱侵入岩带的重要组成部分[17],浅成斑岩(二长斑岩及花岗斑岩等)为主要赋矿岩石。小龙潭矿区始新世侵入岩体研究程度较低,正确判断其成因类型,对于分析其矿床成因,构建成矿模式均具有重要意义。本文运用锆石U-Pb年代学、元素地球化学以及Lu-Hf 同位素方法研究矿区内中酸性侵入岩体,以期探讨岩体侵位时代、岩浆来源及构造背景对成矿的指示意义。
小龙潭铜矿区地处扬子地块西南边缘活动带,紧靠程海—宾川断裂,处于大致平行且紧密分布的断层与褶皱相间的南北向构造体系(图1-A)。
矿区地层主要为上三叠统白土田组(T3b),根据岩性组成特征,将白土田组分为5段,5个岩性段对称分布,形成矿区筌麻箐—小龙潭向斜,矿体主要产于向斜的扬起端。矿床位于东西向之核桃箐断裂两侧,其形态及分布受近南北向的断裂及筌麻箐—小龙潭向斜控制,产状与斑岩体产状基本一致,走向近南北向展布,倾向北西,多以脉状产出(图1-B)。区域岩浆活动频繁,具多期性。小龙潭矿区斑岩体是一套由二长斑岩、花岗斑岩组成的复合岩体,其中以紫灰色石英二长斑岩为主,铜矿化较好(图1-C、D),岩体内普遍发育自交代作用和热液蚀变作用[18-21]。
2.1 样品特征
U-Pb年龄测定的样品取自矿区内沿核桃箐断层广泛分布的主要含矿斑岩体——石英二长斑岩,地球化学样品取自矿区石英二长斑岩、黑云角闪石英二长斑岩及花岗斑岩(图1-B)。
含矿石英二长斑岩呈紫灰色,多为斑状结构,块状构造(图1-C)。斑晶主要由斜长石、钾长石、石英、角闪石、黑云母构成,粒度为0.1~5 mm。斜长石为中长石,其质量分数(w)约为25%,呈半自形宽板状,可见轻微绢云母化、高岭土化,多见隐约环带。钾长石为正长石,质量分数约为20%,呈半自形板状,可见轻微高岭土化。基质内长英质粒径一般<0.05 mm,质量分数为40%~45%,石英含量稍高,与鳞片状黑云母、柱粒状角闪石均零散分布(图1-D)。
2.2 测试方法
锆石单矿物分选工作采用常规重力及电磁分选法,在河北省区调队实验室完成。在显微镜下挑选裂纹较少、透明度好、干净的锆石,交由北京凯德正科技有限公司制成环氧树脂样品靶;在中国科学院地质与地球物理研究所电子探针实验室完成透射光、反射光和阴极发光(CL)图像的拍摄。使用UP193-FX ArF准分子激光器(美国ESI公司生产)和Neptune多接收器电感耦合等离子体质谱仪(Thermo Fisher公司生产),在天津地质矿产研究所完成锆石LA-MC-ICP-MSU-Pb同位素分析,激光剥蚀束斑直径为50 μm[22],其中U-Pb同位素分馏校正使用GJ-1作为外部锆石年龄标准,普通铅校正使用208Pb校正法,锆石Pb、U、Th含量计算使用NIST612玻璃标样,数据处理使用ICPMSDataCal程序[23],平均值计算和U-Pb谐和图绘制使用Isoplot程序[24]。
图1 小龙潭斑岩型铜矿区地质略图Fig.1 Simplified geological map of the Xiaolongtan porphyry copper deposit(A)区域地质略图;(B)矿区地质略图;(C)矿区始新世石英二长斑岩野外露头;(D)矿区始新世石英二长斑岩显微照片(正交偏光)。Bi.黑云母;Pl.斜长石;Q.石英;Or.正长石
全岩主元素、痕量元素和稀土元素测试分析是在河北省区域地质矿产调查研究所实验室完成。选取新鲜原岩样品粉碎至200目,主元素的测试采用荷兰PANalytical公司生产的X射线荧光光谱仪(Axios max X)完成,其检出限(质量分数)为0.05%~0.1%;稀土元素和痕量元素的测试,运用的是等离子体质谱仪(ICP-MS,X Serise 2,由美国Thermor Fisher公司生产),其检出限(质量分数)为0.1×10-6~1×10-6。
锆石Hf同位素分析点均位于锆石U-Pb同位素分析点附近(图2),测试工作在中国地质科学院矿产资源研究所完成,采用了Newwave UP213激光剥蚀系统和Finnigan Neptune型多接收器等离子体质谱仪,激光剥蚀束斑直径44 μm。本实验采用GJ-1作为标准锆石,用于检测实验数据。GJ-1的Hf同位素质量分数为0.282 012±0.000 017(2σ,N=24),与文献记载的参考值[25]在误差范围内一致。
2.3 分析结果
2.3.1 锆石U-Pb同位素特征
小龙潭矿区含矿石英二长斑岩中的锆石普遍为透明柱状或粒状,自形程度相对较高,长径为100~300 μm;wTh/wU比值一般为0.15~ 0.42(表1),明显大于0.1,平均值为0.26;可见典型的岩浆振荡环带结构(图2)。本次研究分析了二长斑岩样品的30颗锆石(表1),30个分析点均在和谐线上或其附近,计算得出谐和度在95%以上,表明锆石未受明显的后期热事件影响。被测锆石点的206Pb/238U年龄为35~38 Ma,变幅较小,其加权平均值为(35.93±0.16) Ma(2σ,MSWD=1.17),显示小龙潭矿区斑岩体为古近纪始新世岩浆活动的产物。小龙潭矿区年代学研究程度较低,与附近研究程度较高的马厂箐斑岩型铜矿区相比,此结果也与前人研究结果一致[26-28]。根据斑岩型铜矿成矿规律[29-30],矿区富碱侵入岩体与斑岩型铜钼矿化同属一个斑岩成矿系统,即成岩略早于成矿,但为同期产物,所以矿区铜矿床的形成时间为35~38 Ma B.P.。
表1 小龙潭矿区石英二长斑岩样品锆石LA MC ICP MSU Pb同位素分析结果
图2 小龙潭矿区石英二长斑岩样品锆石代表性阴极发光图像及锆石U-Pb谐和图、206Pb/238U年龄图Fig.2 Representative CL images, zircon U-Pb concordia diagram and 206Pb/238U age plot for the quartz-monzonite-porphyry in Xiaolongtan mining area图A中1、2、4等数字为测试点号;(36±0.16) Ma等为206Pb/238U年龄;实线圈为U-Pb同位素测试点;虚线圈为Lu-Hf同位素测试点
2.3.2 全岩地球化学特征
小龙潭矿区始新世斑岩体全岩主元素的质量分数(表2):SiO2为64.81%~69.6%,平均为66.80%;Na2O+K2O为8.9~12.82%,平均为11.27%;MgO为0.28%~1.42%,平均为0.78%;TFeO为1.15%~4.03%,平均为2.52%;CaO为0.1%~1.75%,平均为0.59%:总体呈中性富碱高钾低MgO、TFeO、CaO的特征。碱度率(AR)为3~8.27,里特曼指数(δ)为3.41~7.54,平均5.45,属于碱性系列;在AR-SiO2图解(图3-A)中,落入碱性—过碱性区域;A/CNK为0.99~1.36,平均为1.09,属次铝、过铝质岩石;A/NK-A/KNC图解(图3-B),落入准铝质—过铝质过渡区域。岩石CIPW标准矿物组合为石英、钾长石、钠长石、钙长石、透辉石,属于SiO2过饱和型。所以小龙潭矿区始新世斑岩体属于高钾的碱性—过碱性、准铝质—过铝质斑岩。
图3 小龙潭矿区斑岩体AR-SiO2图解及A/CNK-A/NK图解Fig.3 AR-SiO2 and A/CNK-A/NK diagrams for the porphyry in Xiaolongtan mining area(A)作图方法据J.B.Wright(1969); (B)作图方法据Maniar and Piccoli(1989)
表2 小龙潭矿区始新世石英二长斑岩全岩元素特征
续表2
岩性黑云角闪石英二长斑岩石英二长斑岩花岗斑岩样品号D2⁃b2D5⁃b1D1⁃b1D4⁃b1D4⁃b2D4⁃b3D6⁃b1D5⁃b3D7⁃b1(wGd/wYb)N4.874.805.685.106.504.574.793.684.97δCe1.050.650.520.510.500.540.870.750.68δEu0.971.130.890.981.031.121.010.991.08w/10-6Cs2.842.393.173.243.243.291.751.723.93Rb110.40268.00226.20298.00283.00278.0097.40243.00334.00Sr1091.10580.00447.80286.00481.00411.001508.00574.00266.00Ba246832531780145723472418227817962224Ga19.5028.7027.4028.9024.9025.7022.5024.3016.70Nb10.368.4812.239.028.6410.0013.8010.102.74Ta0.570.340.590.390.400.750.520.750.31Zr208.60189.00198.80212.00249.00234.00236.00203.00160.00Hf7.665.146.376.566.257.4311.405.904.98Th19.1820.2018.4920.9026.0021.9026.0023.0017.40V79.6034.9080.5042.0045.1038.0040.7051.7047.20Cr32.609.0418.8012.808.3011.6020.7015.5017.20Co6.806.0815.5014.008.403.048.602.571.06Ni24.003.439.804.595.382.9921.004.932.51Li11.9513.7018.0123.0017.6015.6010.5012.4023.20wLREE/wHREE15.2517.2026.2521.5623.7318.5819.8718.4021.31(wLa/wYb)N24.7425.3063.7144.1553.7428.8436.4427.8936.61(wLa/wSm)N2.693.316.965.715.193.814.814.984.68(wGd/wYb)N4.874.805.685.106.504.574.793.684.97δCe1.050.650.520.510.500.540.870.750.68δEu0.971.130.890.981.031.121.010.991.08
小龙潭矿区始新世斑岩体痕量元素含量如表2。稀土元素的总质量分数(w∑REE)为(225.5~405.46)×10-6,平均为304.94×10-6;wLREE/wHREE为15.25~26.25,平均为20.24;(wLa/wYb)N为24.74~63.71,平均为37.94,属轻稀土元素富集型;δEu为0.89~1.13,平均为1.02,具较弱或无负铕异常。稀土配分曲线(图4-A)为右陡平滑曲线,属轻稀土富集型。痕量元素原始地幔标准化蛛网图(图4-B)显示富集大离子亲石元素,如Rb、Ba、K、Sr等,亏损Ta、Nb、P、Ti等高场强元素。由于Sr、Eu一般富集于斜长石中,所以Sr、Eu负异常反映岩浆源区可能存在少量残留的斜长石,或者在岩浆结晶分异过程中有部分斜长石发生了分离作用。
2.3.3 锆石Hf同位素特征
小龙潭矿区始新世二长斑岩30颗锆石Hf同位素(表3)显示176Yb/177Hf比值为0.028 636~0.063 337,176Lu/177Hf比值为0.000 739~0.001 577,均小于0.002,表明在锆石形成之后,并没有明显的放射性成因导致Hf积累,因此,可以用所测得的176Hf/177Hf比值代表形成时Hf同位素的组成[31]。锆石的176Hf/177Hft比值为0.281 988~0.282 796,对应εHf(t)值为-26.93~1.66,地壳模式年龄为1 009~4 141 Ma。
3.1 成因类型
关于小龙潭矿区所处的三江地区富碱侵入岩体的成因类型存在一定争议。
从主元素测试结果来看,小龙潭矿区斑岩体SiO2质量分数为64.81%~69.6%(平均为66.8%),均>56%;高铝,Al2O3质量分数为15.24%~16.45%(平均为15.67%),均>15%;MgO质量分数为0.28%~1.42%(平均为0.78%),均<3%;贫Y,Y质量分数为(9.22~17.40)×10-6(平均为13.72×10-6),均<18×10-6;贫Yb,Yb质量分数为(0.86~1.36)×10-6(平均为1.12×10-6),均<1.9×10-6;富Sr,Sr质量分数为(266~1508)×10-6(平均为627×10-6),绝大多数>400×10-6;轻稀土元素富集,无或弱负Eu异常。具有埃达克岩的地球化学特征[35-37],wYb-(wLa/wYb)投图亦落入埃达克岩区域(图5-A);此外,K2O的质量分数为4.36%~10.95%,平均高达9.01%,符合典型的钾质埃达克岩(SKA)特征,属钾质的C型埃达克岩[38-39]。
表3 小龙潭矿区始新世石英二长斑岩样品锆石lu Hf同位素分析结果
图4 小龙潭矿区斑岩体类稀土元素球粒陨石标准化配分曲线图(A)及痕量元素原始地幔标准化蛛网图(B)Fig.4 Chondrite-normalized REE patterns (A) and primitive mantle-normalized trace element patterns (B) for the porphyry in Xiaolongtan mining area(A)标准化值据Boynton(1984); (B)标准化值据Sun and McDonough(1989)
但是,对于中国的埃达克岩及C型埃达克岩的概念,国内地学界争议广泛。埃达克岩原意是指一类岛弧型岩浆岩,是具有明确岩性学、岩石成因及大地构造环境的岩石[39]。一般将具有埃达克质成分特征但非俯冲成因、非岛弧环境的岩石称为“埃达克质岩”(Adakite-like)[38-41]。一般认为C型埃达克岩是玄武质岩浆底侵到加厚陆壳(厚度>50 km)底部导致下地壳基性岩部分熔融的产物[39-40]。前人认为中国的斑岩型铜矿多与埃达克质岩有关,有些被划归富碱侵入岩或A型花岗岩的斑岩铜矿也具有与埃达克岩类似的富Sr和贫Y、Yb以及wSr/wY和wSr/wYb值高的特征[8],并将小龙潭矿区所在区域划为与埃达克质岩(C型埃达克岩)有关的羌塘-藏东-川西-滇西成矿亚带(30~40 Ma B.P.)[37]。
此外,小龙潭铜矿床产于陆块内,属于与埃达克质岩有关的陆内成矿作用,普遍认为C型埃达克岩起源于下地壳深部,处于下地壳增厚环境[42-50]。小龙潭斑岩体强烈亏损重稀土元素和高场强元素,具有强烈的Nb、Ta负异常,指示其源区残留相中有石榴石,较陡的REE配分模式和高的wSr/wYb(平均为56)也说明发生部分熔融时残留相为榴辉岩相[51];斑岩体的wY/wYb为9.56~14.78,平均为12.69,表明岩体的源区残留相中除了石榴石还可能有角闪石,即(角闪)榴辉岩相,因此,小龙潭斑岩体岩浆源区深度大致在50~60 km。新生代板块碰撞,导致青藏高原整体隆升,地壳增厚(图5-B),形成全球地壳厚度最大的地区(厚度>50 km),为小龙潭矿区C型埃达克质岩的产出提供了必要条件。
图5 小龙潭矿区斑岩体Yb-(La/Yb)图解和青藏高原碰撞造山带东缘及小龙潭矿区构造-岩浆-成矿事件年代格架图Fig.5 Yb-(La/Yb) plots for the porphyry in Xiaolongtan mining area and the geochronological framework of major tectonics-magmatism- metallogenesis events in the eastern margin of Qinghai-Tibet Plateau collision belt and Xiaolongtan district(A)据M.J.Defant等(1990); (B)据文献[6,7]修改
另一方面,小龙潭矿区斑岩体的TFeO含量较高,质量分数为1.15%~4.03%,明显高于1.00%;wNa2O/wK2O比值较低,为0.04~1.04,均小于1.18;1000×wGa/wAl值较高,为2.03~3.55,多数大于2.6;Ce质量分数相对较高(96.9×10-6~183.0×10-6),其中大多数样品均大于100×10-6,与A型花岗岩的特征相符。在10000×wGa/wAl对wNa2O+K2O图解中(图6-A),投影的样品全部落入A型花岗岩区;在(wY/wNb)-(wYb/wTa)图解中(图6-B),样品均落入A2型花岗岩区。小龙潭矿区紧邻研究程度较高的马厂箐铜矿床[11,27-28,52-53],将小龙潭斑岩体与世界A型花岗岩、马厂箐岩体及哀牢山—金沙江富碱侵入岩等地的A型花岗岩的痕量元素特征作对比,结果显示,小龙潭矿区与其他A型花岗岩痕量元素特征变化趋势一致(表4,图7)。此结论也与前人将该区域斑岩型Cu矿床划为富碱侵入岩及A型花岗斑岩矿床结论一致[8,54]。
综上所述,小龙潭矿区斑岩体虽被划入富碱侵入岩及A型花岗岩,但具埃达克岩典型地球化学特征,可定为埃达克质岩;根据其产出位置(大陆内部),可认为研究区斑岩体为C型埃达克质岩。
图6 小龙潭矿区斑岩体(10000×Ga/Al)-(Na2O+K2O)图解(A)及(Y/Nb)-(Yb/Ta)图解(B)Fig.6 (10000×Ga/Al)-(Na2O+K2O) and (Y/Nb)-(Yb/Ta) plots for the porphyry in Xiaolongtan mining area(A)作图方法据J.B.Whalen等(1987); (B)作图方法据C.N.Eby(1992)
表4 小龙潭斑岩体及其他A型花岗岩痕量元素含量(w/10-6)
GB.表示Gold Butle A型花岗岩[55]; PD.表示Parker Dam A型花岗岩[55]; ALS-3,ALS-4.哀牢山—金沙江富碱侵入岩体带中的A型花岗岩[56]; 马厂箐岩体.马厂箐A型花岗岩[8]。
图7 小龙潭斑岩体与其他富碱侵入岩痕量元素含量对比图Fig.7 The comparison diagrams of trace element contents in Xiaolongtan alkali-rich porphyry and other intrusive rocks(A)与世界A型花岗岩对比; (B)与哀牢山—金沙江富碱侵入岩带及马厂箐岩体的A型花岗岩对比
3.2 岩浆源区及其指示意义
从上文可知,小龙潭矿区斑岩地球化学特征更接近C型埃达克岩,说明其可能为陆陆碰撞造成的加厚基性下地壳部分熔融的产物。
锆石Hf 同位素在研究地质演化与岩浆岩物源示踪领域中,具有很大的优势[31]。小龙潭矿区斑岩体锆石的Hf同位素特征显示,其176Hf/177Hf比值多数较低(0.281 988~0.282 748),εHf(t)显示为负值,指示其主要来自于地壳岩石的部分熔融;另外,所研究的30颗锆石中有5颗176Hf/177Hf比值为0.282 757~0.282 796,其εHf(t)为正,说明这些锆石可能含有幔源物质。
此外,矿区斑岩锆石Hf 同位素地壳模式年龄在1.0~4.1 Ga之间变化(集中于1.0~1.5 Ga)(图8-B),说明小龙潭斑岩体主要来源于中晚元古代地壳物质的部分熔融;锆石εHf(t)值变化范围较大:-26.93~1.66(集中于-2左右)(图8-A)。通常认为,壳幔相互作用,或者其他混源作用,造成分布较宽的εHf(t) 值域,并且正负值变化较大[57-58]。本次研究分析的数据通过投点显示,多数样品分布于球粒陨石演化线的下方(图9),εHf(t)值总体偏负,最大值与最小值相差高达45个单位,明显超出了分析方法自身所造成的误差[59]。锆石Hf同位素的不均一性,同样指示矿区岩体的多来源特征。锆石εHf(t)值集中在-2左右(图8-A),其中含有εHf(t)=-27左右的另一种锆石,反映了岩浆混合作用:εHf(t)=-2的锆石反映下地壳熔融成因,εHf(t)=-27表示该岩石可能来自于软流圈或亏损的岩石圈地幔。发生岩浆混合作用时,由于锆石结晶相对较早,且Hf同位素体系具有较高的封闭温度,该同位素比值不会受到岩浆部分熔融或分离结晶作用的影响,因此可以保留不同的锆石Hf同位素比值,不但记录了早期未混合岩浆的初始同位素组成,也记录了后期受幔源岩浆混合后体系的同位素组成[60]。
图8 小龙潭矿区斑岩体锆石εHf(t)分布直方图及锆石Hf同位素地壳模式年龄直方图Fig.8 εHf(t) and DMhistogram for the Eocene porphyry in Xiaolongtan mining area
图9 小龙潭矿区斑岩体锆石εHf(t)-锆石U-Pb年龄图解Fig.9 εHf(t)-zircon U-Pb age plot for the porphyry in Xiaolongtan mining area
综上所述,小龙潭矿区始新世斑岩体主要来源于下地壳物质的部分熔融,并有幔源物质的加入。
3.3 构造背景及地质意义
在R1-R2图解中(图10),小龙潭矿区斑岩体样品落入造山晚期(4区)和非造山(5区)交界部位,说明小龙潭矿区斑岩形成于造山期向非造山期的转换期。在洋中脊花岗岩标准化模式图上(图11),强烈亏损的元素主要有Nb、Ta、Zr、Hf等,与造山期后花岗岩特征一致,说明小龙潭矿区斑岩形成于构造期后[61]。此外,C型埃达克岩常产于造山作用后碰撞阶段[62],在此构造应力下,热的软流圈地幔物质上涌,在地幔热的烘烤下,使下地壳部分熔融形成埃达克岩。小龙潭矿区斑岩体为一套高钾的过碱性—钙碱性的碱性—过碱性岩,为典型拉张环境下的产物。
图10 小龙潭矿区始新世斑岩体R1-R2图解Fig.10 R1-R2 plots for the porphyry in Xiaolongtan mining area(作图方法据Batchelor & Bowddrn, 1985)1.地幔斜长花岗岩; 2.破坏性活动板块边缘(板块碰撞前)花岗岩;3.板块碰撞后隆起期花岗岩;4.晚造山期花岗岩;5.非造山区A型花岗岩; 6.同碰撞(S型)花岗岩;7.造山期后A型花岗岩
晚始新世至渐新世末期(38.6~23.3 Ma B.P.),喜马拉雅构造运动产生会聚碰撞,致使滇西及青藏高原会聚带的地壳急剧缩短。该时期印度地块向北挤压,导致地体内部发生剧烈收缩,最终使得该区域产生大幅度的地形隆升。为吸收和调节印—亚大陆强烈的碰撞和变形,伴随发生较大范围的以陆内上冲推覆与剪切走滑活动为特征的陆内块体间的相对运动。在此过程中,金沙江—哀牢山韧性剪切带、宾川—程海断裂、丽江—木里断裂等深大断裂发生大规模走滑拉分作用。与此同时,周围地体的碰撞挤压作用致使深部软流圈物质上涌和热侵蚀,导致长期复杂的地壳和地幔之间的相互作用,进而形成区内广泛分布的新生代岩浆岩,以及与之紧密伴随的成矿作用。小龙潭矿区斑岩正是这样一个大的构造背景下的产物,斑岩体沿宾川—程海断裂的次级断裂上侵而形成。
图11 小龙潭矿区斑岩体洋中脊花岗岩标准模式图Fig.11 Standard patterns of mid-ocean ridge granite for the Eocene porphyry in Xiaolongtan mining area(作图方法据Pearce,1982)
a.小龙潭矿区斑岩体的锆石SHRIMP U-Pb年龄为(35.98±0.16) Ma,显示矿区斑岩体是古近纪始新世岩浆活动作用的产物。
b.小龙潭斑岩型Cu多金属矿床虽被划入富碱侵入岩及A型花岗岩矿床,但具埃达克岩典型地球化学特征,根据其产出位置(大陆内部),可认为研究区斑岩体为C型埃达克岩。
c.小龙潭矿区斑岩体元素地球化学特征及锆石Hf同位素组成的分析结果显示,矿区岩体具有多种物质来源,主要来自于下地壳物质的部分熔融,并且混有幔源物质。
d.喜马拉雅构造运动会聚碰撞,致使局部产生较强拉张环境,研究区即处在此构造背景下的挤压后应力松弛阶段,斑岩体沿宾川—程海断裂的次级断裂上侵,进而形成铜多金属矿床。
[1] 金志升,黄智龙,朱成明.云南三江地区富碱侵入岩与煌斑岩的同源性[J].矿物岩石地球化学通报,1997,16(4):14-16. Jin Z H, Huang Z L, Zhu C M. Consanguinity of Alkaline Intrusions and Lamprophyres of Sanjiang district, Yunnan Province[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 1997, 16(4): 14-16. (in Chinese)
[2] 高兰,肖克炎,丛源,等.西南三江锌铅银铜锑金成矿带成矿特征及资源潜力[J].地质学报,2016,90(7):1650-1667. Gao L, Xiao K Y, Cong Y,etal. Metallogenic characteristics and mineral resource potential of the southwestern Sanjiang Zn-Pb-Cu-Ag-Sb-Au metallogenic belt[J]. Acta Geologica Sinica, 2016, 90(7): 1650-1667. (in Chinese)
[3] Hou Z Q, Zaw K, Pan G T,etal. Sanjiang Tethyan metallogenesis in SW China: Tectonic setting, metallogenic epochs and deposit types[J]. Ore Geology Reviews, 2007, 31: 48-87.
[4] 莫宣学,潘桂棠.从特提斯到青藏高原形成:构造-岩浆事件的约束[J].地学前缘,2006,13(6):41-51. Mo X X, Pan G T. From the Tibetan Plateau to Tethys formed: structure-magmatic events[J]. Earth Science Frontiers, 2006, 13(6): 41-51. (in Chinese)
[5] 丛源,董庆吉,肖克炎.三江成矿带斑岩型矿床成矿模式与找矿方向研究[J].地质学刊,2013,37(4):562-569. Cong Y, Dong Q J, Xiao K Y. Study on metallogenic model and ore exploration of porphyry deposits in Sanjiang metallogenic belt[J]. Journal of Geology, 2013, 37(4): 562-569. (in Chinese)
[6] 和文言,莫宣学,喻学惠,等.滇西马厂箐斑岩型铜钼(金)矿床成岩成矿时代研究[J].地学前缘,2011,18(1): 207-215. He W Y, Mo X X, Yu X H,etal. Geochronological study of magmatic intrusions and mineralization of Machangqing porphyry Cu-Mo-Au deposit, western Yunnan Province[J]. Earth Science Frontiers, 2011, 18(1): 207-215. (in Chinese)
[7] 侯增谦,曲晓明,王淑贤,等.西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os年龄:成矿作用时限与动力学背景应用[J].中国科学:D辑, 2003,33(7):609-618. Hou Z Q, Qu X M, Wang S X,etal. Molybdenite Re-Os age of porphyry copper belt in Tibet Plateau: Application of the mineralization time and dynamic background[J]. Science in China: Series D, 2003, 33(7): 609-618. (in Chinese)
[8] 毕献武,胡瑞忠,叶造军,等. A型花岗岩类与铜成矿关系研究——以马厂箐铜矿为例[J].中国科学(D辑), 2000,43(7):93-102. Bi X W, Hu R Z, Ye Z J,etal. Relation between A-type granites and copper mineralization as exemplified by the Machangqing Cu deposit[J]. Science in China (Series D), 2000, 43: 93-102. (in Chinese)
[9] 毕献武,胡瑞忠,彭建堂,等.姚安和马厂箐富碱侵入岩体的地球化学特征[J].岩石学报,2005,21(1):113-124. Bi X W, Hu R Z, Peng J T,etal. Geochemical characteristics of the Yao’an and Machangqing alkaline-rich intrusions[J]. Acta Petrologica Sinica, 2005, 21(1): 113-124. (in Chinese)
[10] 葛良胜,邹依林,李振华,等.云南马厂箐(铜、钼)金矿床地质特征及成因研究[J].地质与勘探,2002,38(5):11-17. Ge L S, Zou Y L, Li Z H,etal. Geological features and genesis of Machangqing Cu-Mo-Au deposit related to the rich-alkli magmatic rock, Yunnan Province[J]. Geology and Prospecting, 2002, 38(5): 11-17. (in Chinese)
[11] 郭晓冬,李建文,夏锐,等.滇西马厂箐富碱侵入岩体形成机制研究[J].地质论评,2014,60(1):125-137. Guo X D, Li J W, Xia R,etal. Study on forming mechanism of Machangqing alkaline-rich intrusive rock in Western Yunnan[J]. Geological Review, 2014, 60(1): 125-137. (in Chinese)
[12] Muller D, Groves D I. Direct and indirect associations between pot assicigneous rocks, shoshonites and gold-copper deposits[J]. Ore Geology Reviews, 1993, 8: 383-406.
[13] Jamen L W, Mohammed I, Feeix E M. Allard stock, La Plata Mountains, Colorado - An alkaline rock-hosted porphyry copper-precious metal deposit[J]. Can J Earth Sci, 1984, 21: 630-641.
[14] 张旗,钱青,王二七,等.燕山中晚期的中国东部高原:埃达克岩的启示[J].地质科学,2001,36(2):248 -255. Zhang Q, Qian Q, Wang E Q,etal. Existence of East China Plateau in mid-late Yanshanian period: Implication from adakites[J]. Scientia Geologica Sinica, 2001, 36(2): 248-255. (in Chinese)
[15] 张旗,王焰,刘红涛,等.中国埃达克岩的时空分布及其形成背景,附:国内关于埃达克岩的争论[J].地学前缘,2003,10(4):385-400. Zhang Q, Wang Y, Liu H T,etal. On the space-time distribution and geodynamic environments of adakites in China, Annex: the debates on adakite research in China[J]. Frontiers in Earth Sciences, 2003, 10(4): 385-400. (in Chinese)
[16] 张旗,王焰,刘伟,等.埃达克岩的特征及其意义[J].地质通报,2002,21(7):431-435. Zhang Q, Wang Y, Liu W,etal. Adakite: Its characteristics and implications[J]. Geological Bulletn of China, 2002, 21(7): 431-435. (in Chinese)
[17] 张金学,罗洪昌,刘利超,等.宾川小龙潭斑岩铜钼矿矿化特征及控矿条件[J].云南地质,2014,33(2):214-218. Zhang J X, Luo H C, Liu L C,etal. The metallogenetic feature and ore control conditions of Xiaolongtan porphyry Cu-Mo deposit, Binchuan[J]. Yunnan Geology, 2014, 33(2): 214-218. (in Chinese)
[18] 张金学,王文超,雷阳艾,等.宾川小龙潭斑岩铜矿找矿方向思考[J].云南地质,2009,8(4):409-414. Zhang J X, Wang W C, Lei Y A,etal. Considerations of prospecting direction for Xiaolongtan porphyry copper deposit in Binchuan County[J]. Yunnan Geology, 2009, 8(4): 409-414. (in Chinese)
[19] 西南有色地质勘查局310地质分队.小龙潭评价报告书[R].昆明:云南有色地质局,1977. 310 Geological Unit of Southwest Nonferrous Geological Exploration Bureau. Evaluation Report of Xiaolongtan Deposit[R]. Kunming: Yunnan Geological Survey of Nonferrous Metal, 1977. (in Chinese)
[20] 西南有色地质勘查局地质研究所斑岩组及310地质分队. 云南省宾川县小龙潭斑岩铜矿点成矿规律[R]. 昆明:云南有色地质局,1993. Southwest Institute of Geological Exploration and 310 Geological Unit of Southwest Nonferrous Geological Exploration Bureau. Mineralization Law of Xiaolongtan Porphyry Copper Deposit in Binchuan County, Yunnan Provincet[R]. Kunming: Yunnan Geological Survey of Nonferrous Metal, 1993. (in Chinese)
[21] 西南有色地质勘查局310地质分队.宾川小龙潭矿化斑岩体地质特征简介[R].昆明:云南有色地质局,1977. 310 Geological Unit of Southwest Nonferrous Geological Exploration Bureau. Profile of Mineralized Porphyry Geological Characteristics in Xiaolongtan Deposit, Binchuan County [R]. Kunming: Yunnan Geological Survey of Nonferrous Metal, 1977. (in Chinese)
[22] 李怀坤,耿建珍,郝爽,等.用激光烧蚀多接收器等离子体质谱仪(LA-MC-ICPMS)测定锆石U-Pb同位素年龄的研究[J].矿物岩石地球化学通报,2009,28(增刊):77. Li H K, Gen J Z, Hao S,etal. Determination of zircon U-Pb isotopic ages by laser ablation multi-collector plasma mass spectrometry (LA-MC-ICPMS)[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2009, 28(Supplement): 77. (in Chinese)
[23] Liu Y S, Gao S, Hu Z C,etal. Continental and oceanic crust recycling-induced melt-peridotite interactions in Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2009, 51(1/2): 537-571.
[24] Ludwig K R. Users Manual for Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel[M]. Berkeley Geochronology Center, Special Publication, 2003, 4: 1-71.
[25] 侯可军.LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J].岩石学报,2007,23(10):2595-2604. Hou K J. LA-MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications[J]. Acta Petrologica Sinica, 2007, 23(10): 2595-2604. (in Chinese)
[26] 贾丽琼,莫宣学,董国臣,等.滇西马厂箐煌斑岩成因:地球化学、年代学及Sr-Nd-Pb-Hf同位素约束[J].岩石学报,2013,29(4):1247-1260. Jia L Q, Mo X X, Dong G C,etal. Genesis of lamprophyres from Machangqing, western Yunnan: Constraints from geochemistry, geochronology and Sr-Nd-Pb-Hf isotopes[J]. Acta Petrologica Sinica, 2013, 29(4): 1247-1260. (in Chinese)
[27] 王治华,郭晓东,葛良胜,等.云南马厂箐铜多金属矿床的成岩成矿时代及成矿动力学背景[J].矿床地质,2011,30(1):45-56. Wang Z H, Guo X D, Ge L S,etal. Diagenetic and metallogenic epoch and ore-forming dynamic setting of Machangqing copperpolymetallic deposit, Yunnan Province[J]. Mineral Deposits, 2011, 30(1): 45-56. (in Chinese)
[28] 郭晓东,王治华,王梁,等.云南马厂箐岩体(似)斑状花岗岩锆石LA-ICP-MS U-Pb年龄及地质意义[J].中国地质,2011,38(3):610-622. Guo X D, Wang Z H, Wang L,etal. LA-ICP-MS zircon U-Pb ages of porphyritic granite in Machangqing complex of Yunnan Province and their geological significance[J]. Geology in China, 2011, 38(3): 610-622. (in Chinese)
[29] Sillitoe R H. A plate tectonic model for the origin of porphyry copper deposits[J]. Econ Geol, 1972, 67: 187-197.
[30] 曾键年,许继峰.埃达克质岩与成矿:困惑与探索[J].地学前缘,2008,15(6):278-292. Zeng J N, Xu J F. Adakite-like rocks and mineralization: confusion and inquiry[J]. Earth Science Frontiers, 2008, 15(6): 278-292. (in Chinese)
[31] 吴福元,李献华,郑永飞,等. Lu-Hf同位素体系及其岩石学应用[J].岩石学报,2007,23(2):185-220. Wu F Y, Li X H, Zheng Y F,etal. Lu-Hf isotopic systematics and their applications in petrology[J]. Acta Petrologica Sinica, 2007, 23(2): 185-220. (in Chinese)
[32] Blichert-Toft J, Albarède F. The Lu-Hf geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth and Planetary Science Letters, 1997, 148(1/2): 243-258.
[33] Griffin W L, Pearson N J, Belousova E,etal. The Hf isotope composition of cratonic mantle: LA-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimic et Cosmochimica Acta, 2000, 64: 133-147.
[34] Soderlund U, Patchett P J, Vervoort J D,etal. The176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters, 2004, 219: 311-324.
[35] 王焰,张琪,钱青.埃达克岩(adakite)的地球化学特征及其构造意义[J].地质科学,2000,35(2):251-256. Wang Y, Zhang Q, Qian Q. Adakite: Geochemical characteristics and tectonic significances[J]. Scientia Geologica Sinica, 2000, 35(2): 251-256. (in Chinese)
[36] 张旗,秦克章,王元龙,等.加强埃达克岩研究——开创中国Cu、Au等找矿工作的新局面[J].岩石学报,2004,20(2):195-204. Zhang Q, Qin K Z, Wang Y L,etal. Study oil adakite broadened to challenge the Cu and Au exploration in China[J]. Acta Petrologica Sinica, 2004, 20(2): 195-204. (in Chinese)
[37] 张旗,秦克章,许继峰,等.中国与埃达克质岩有关的矿床分布、找矿方向及找矿方法刍议[J].华南地质与矿产,2004(2):2-8. Zhang Q, Qin K Z, Xu J F,etal. Discussion of distribution, prospecting principle and method for deposits related to adakites in China[J]. Geology and Mineral Resources of South China, 2004(2): 2-8. (in Chinese)
[38] 张旗,许继峰,王焰,等.埃达克岩的多样性[J].地质通报,2004,23(9/10):959-965. Zhang Q, Xu J F, Wang Y,etal. Diversity of adakite[J]. Geological Bulletin of China, 2004, 23(9/10): 959-965. (in Chinese)
[39] 张旗.关于C型埃达克岩成因的再探讨[J].岩石矿物学杂志,2011,30(4):739-747. Zhang Q. Reappraisal of the origin of C-type adakitic rocks from East China[J]. Acta Petrologica et Mineralogica, 2011, 30(4): 739-747. (in Chinese)
[40] 王元龙,张旗,王强,等.埃达克质岩与Cu-Au成矿作用关系的初步探讨[J].岩石学报,2003,19(3):543-550. Wang Y L, Zhang Q, Wang Q,etal. Study on adakitic rock and Cu-Au mineralization[J]. Acta Petrologica Sinica, 2003, 19(3): 543-550. (in Chinese)
[41] Castillo P R. An overview of adakite petrogenesis[J]. Chinese Science Bulletin, 2006, 51(3): 257.
[42] Xu J F, Shinjo R, Defant M J,etal. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: partial melting of delaminated lower continental crust[J]. Geology, 2002, 30: 1111-1114.
[43] Defant M J, Xu J F, Kepezhinskas P,etal. Adakites: some variations on a theme[J]. Acta Petrologica Sinica, 2002, 18(2): 129-142.
[44] Kay R W, Kay S M. Creation and destruction of lower continental crust[J]. Geologische Rundschau, 1991, 80: 259-278.
[45] Kay R W, Kay S M. Delamination and delamination magmatism[J]. Tectonophysics, 1993, 219: 177-189.
[46] Wang Q, Xu J F, Jian P,etal. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, South China: Implications for the genesis of porphyry copper mineralization[J]. Journal of Petrology, 2006, 47: 119-144.
[47] Atherton M P, Petford N. Generation of sodium-rich magmas from newly under plated basaltic crust[J]. Nature, 1993, 362: 144-146.
[48] Muir R J, Weaver S D, Bradshaw J D,etal. Geochemistry of the Cretaceous Separaton Plint Batholith, New Zealand: Granitoid magmas formed by melting of mafic lithosphere[J]. J Geol Soc Lond, 1995, 152: 689-701.
[49] Petford N, Atherton M. Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith[J]. Peru J Petrology, 1996, 37: 1491-1521 .
[50] Conrey R M, Hooper P R, Larson P B,etal. Trace element and isotopic evidence for two types of crustal melting beneath a high Cascade volcanic center, Mt. Jefferson, Oregon[J]. Contrib Mineral Petrol, 2001, 141: 710-732 .
[51] 牛耀龄.全球构造与地球动力学——岩石学与地球化学方法应用实例[M].北京:科学出版社,2013. Niu Y L. Global Tectonics and Geodynamics: Some Applied Examples of Petrology and Geochemical Methods[M]. Beijing: Science Press, 2013. (in Chinese)
[52] 葛良胜,邹依林,李振华,等.云南马厂箐(铜、钼)金矿床地质特征及成因研究[J].地质与勘探,2002,38(5):11-17. Ge L S, Zou Y L, Li Z H,etal. Geological features and genesis of Machangqing Cu-Mo-Au deposit related to the rich-alkli magmatic rock, Yunnan Province[J]. Geology and Prospecting, 2002, 38(5): 11-17. (in Chinese)
[53] 张民,刘显凡,赵甫峰.滇西马厂箐埃达克质富碱斑岩特征、成因与成矿意义[J].成都理工大学学报(自然科学版),2014,41(2):218-226. Zhang M, Liu X F, Zhao F F. Characteristics, genesis and metallogenic significance of Machangqing adakite porphyry rich in alkali from West Yunnan, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2014, 41(2): 218-226. (in Chinese)
[54] 李朝阳.中国铜矿主要类型特征及其成矿远景[M].北京:地质出版社,2000:351. Li C Y. Study on the Characteristics of Main Types and Metallogenic Prospect of Copper in China[M]. Beijing: Geological Publishing House, 2000: 351. (in Chinese)
[55] Anderson J L, Bender E E. Nature and origin of Proterozoic A-type graniticmagmatism in the southwestern United States of America[J]. Lithos, 1989, 23: 19-52.
[56] 张玉泉, 谢应雯. 青藏高原及邻区富碱侵入岩——以苦干子和太和二岩体为例[J].中国科学:B辑,1994,24:1102-1108. Zhang Y Q, Xie Y W. Alkali-rich intrusive rock of Qinghai-Tibet Plateau and its adjacent areas-an Example on Kuganyu and Taiheer Rock[J]. Science in China: Series B, 1994, 24: 1102-1108.(in Chinese)
[57] 禹丽,李龚健,王庆飞,等.保山地块北部晚白垩世岩浆岩成因及其构造指示:全岩地球化学、锆石U-Pb年代学和Hf同位素制约[J].岩石学报,2014,30(9):2709-2724. Yu L, Li G J, Wang Q F,etal. Petrogenesis and tectonic signficance of the late Cretaceous magmatism in the northern part of the Baoshan block: Constraints from bulk geochemistry, zircon U-Pb geochronology and Hf isotopic compositions[J]. Acta Petrologica Sinica, 2014, 30(9): 2709-2724. (in Chinese)
[58] Hawkesworth C J, Kemp A I S. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution[J]. Chemical Geology, 2006, 226(3/4): 144-162.
[59] Wu F Y, Yang Y H, Xie L W,etal. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology[J]. Chemical Geology, 2006, 234(1/2): 105-126.
[60] 邱检生,肖娥,胡建,等.福建北东沿海高分异I型花岗岩的成因:锆石U-Pb年代学、地球化学和 Nd-Hf同位素制约[J].岩石学报,2008,24(11):2468-2484. Qiu J S, Xiao E, Hu J,etal. Petrogenesis of highly fractioanted I-type granites in the coastal area of northeastern Fujian Province: Constraints from zircon U-Pb geochronology, geochemistry and Nd-Hf isotopes[J]. Acta Petrologica Sinica, 2008, 24(11): 2468-2484. (in Chinese)
[61] Pearce J P. 花岗岩形成的大地构造环境及其痕量元素判别图解[J].地质科学情报,1986,5(1):57-67. Pearce J P. Discrimination diagrams on the tectonic environment and trace element of the granite formation[J]. Geoscience Information, 1986, 5(1): 57-67.
[62] Leloup P H, Arnaud N, Lacassin R,etal. New constraints on the structure, thermochronology and timing of the Ailaoshan Red River shear zone, SE Asia[J]. Journal of Geophysical Research, 2001, 66: 1083-6732.
Petrogenesis and geological significance of the Eocene porphyry in the Xiaolongtan mining area of the western Yunnan, China
ZHOU Jie1, WANG Genhou1, ZHANG Li2
1.SchoolofEarthSciencesandResources,ChinaUniversityofGeosciences,Beijing100083,China;2.EarthSystemScience,YonseiUniversity,Seoul120749,RepublicofKorea
The copper mineralization of Xiaolongtan porphyry type copper-polymetallic deposit in Midu County of Yunnan Province is closely related to the porphyry and the ore-bodies mainly occur in the porphyry and its outer hornfels zone. Study of bulk geochemistry, zircon U-Pb dating, and Hf isotopic composition of the porphyry in the mining area reveals that the zircon U-Pb age of porphyry samples is (35.98±0.16) Ma, representing a product of the Eocene magmatic activity. Geochemical characters of the porphyry show large variation in SiO2(64.81%~69.6%), high in K2O (4.36%~10.95%) and Na2O+K2O (>8%), with the ratio of A/CNK being 0.99~1.36, belonging to K-rich alkaline-peralkaline and metaluminous-peraluminous porphyry series. Trace element analysis shows that the porphyry is deplete in Ta, Nb, P, Ti and rich in K, Rb, Ba, Sr, similar to the features of C-adakite. TheεHf(t) from the zircon is -26.93~1.66 and the model age is 1 009~4 141 Ma, suggesting that the Eocene porphyry are derived from the partial melting of the lower crust material, and associated with the addition of mantle source material. On the basis of regional geological evolution, it is considered that the porphyry is formed in an extensional setting of post collision. After the compression of continental collision, the stress relaxation leads to the magma intrusion along the faults and secondary faults, and forms the copper polymetallic deposits.
Xiaolongtan; Eocene; porphyry; zircon U-Pb; LA-MC-ICP-MS
10.3969/j.issn.1671-9727.2017.03.06
1671-9727(2017)03-0334-16
2017-02-20。
云南有色地质局综合研究项目(201307)。
周洁(1988-),女,博士研究生,构造地质学专业, E-mail: 649448227@qq.com。
P588.1
A