摘 要:Schief證明了若一个自相似集的自相似维数等于空间维数,则该自相似集含有正Lebesgue测度等价于其含有内点。本文基于Schief的结论,证明了若有限个相似压缩簇对于同一个开集均满足开集条件,并且各自的自相似维数均等于空间维数,则由其生成的“弱”不变集也含有内点。
关键词:自相似集;迭代函数系;开集条件;正Lebesgue测度;内部非空
Abstract:Schief demonstrated that the equality between the self-similar dimension of a selfsimilar set and the space dimension ensures the equivalence of positive Lebesgue measure and nonempty interior.Based on Schiefs result,we prove that for finitely many iterated function systems of contraction similitudes,if each of them satisfies the open set condition with respect to the same open set,moreover,if each of them takes the space dimension as its similarity dimension,then the“weak”invariant set generated by them contains interiors.
Key words:selfsimilar set;iterated function system;open set condition;positive Lebesgue measure;nonempty interior
众所周知,在欧氏空间中,若一个集合含有内点,则该集合必然含有正的Lebesgue测度,反之则不然。如著名的ε-康托尔集[1]在任意地方均不稠密,因此不含有内点,但是其Lebesgue测度却大于0。显然,并不是所有的分形集都能保证正Lebesgue测度与内部非空的等价性。
在分形几何的研究中,自相似集是一类重要的研究对象。Peres和Solomyak[2]曾提出以下的问题:
假设自相似集KRd含有正Lebesgue测度,那么K是否含有内点?
答案是否定的,Csrnyei[3]构造出了一类不满足开集条件(OSC)[4]的自相似集,而这类自相似集往往含有正的Lebesgue测度,却不含有内点。另一方面,Schief[5]指出,若某一自相似集满足开集条件,并且其自相似维数等于空间维数时,则当该自相似集的Lebesgue测度大于0时,其内部必然非空。由此可以猜想,当一个分形集具备某种自相似结构,同时满足一定的分离条件时,该集含有正Lebesgue测度等价于内部非空。事实上,许多研究结果[5-14]支撑着这一猜想。
本文基于Schief的研究结果,将自相似集替换为“弱”不变集(见下文定义),推广了Schief的相关结论,并且给出了例子进行论证。
1 基本概念与结论
参考文献:
[1]CD Aliprantis.O Burkinshaw.Principles of Real Analysis.Mathmatical Gazette.66(436):789,1998.
[2]Yuval Peres and Boris Solomyak.Problem on selfsimilar sets and self-affine sets:an update.In Fractal
geometry and stochastics,II(Greifswald/Koserow,1998),volume 46 of Progr.Probab.,pages 95-106.
Birkhuser,Basel,2000.
[3]M.Csrnyei,T.Jordan,M.Pollicott,D.Preiss,and B.Solomyak.Positivemeasure self-similar sets
without interior.Ergodic Theory Dynam.Systems,26(3):755-758,2006.
[4]P.A.P.Moran.Additive functions of intervals and Hausdorff measure.Proc.Cambridge Philos.Soc.,42:15-23,1946.
[5]Andreas Schief.Separation properties for self-similar sets.Proc.Amer.Math.Soc.,122(1):111-115,1994.
[6]Christoph Bandt.Self-similar sets.V.Integer matrices and fractal tilings of Rn.Proc.Amer.Math.Soc.,112(2):549-562,1991.
[7]Christoph Bandt and Siegfried Graf.Self-similar sets.VII.A characterization of self-similar fractals with
positive Hausdorff measure,Proc.Amer.Math.Soc.,114(4):995-1001,1992.
[8]Keqiang Dong and Pengjian Shang.Do self-similar sets with positive Lebesgue measure contain an
interval?Appl.Math.Lett.,23(2):207-211,2010.
[9]Masayoshi Hata.On the structure of eslf-similar sets.Japan J.Appl.Math.,2(2)381-414,1985.
[10]Mike Keane,Meir Smorodinsky,and Boris Solomyak.On the morphology of γexpansions with deleted digits.Trans.Amer.Math.Soc.,347(3):955-966,1995.
[11]Richard Kenyou.Projecting the one-dimensional Sierpinski gasket.Israel J.Math.,97:221-238,1997.
[12]Richard W.Kenyou.Self-similar tilings.ProQuest LLC,Ann Arbor,MI,1990.Thesis(Ph.D.)Princeton University.
[13]Yuval Peres,Micha?Rams,Károly Simon,and Boris Solomyak.Equivalence of positive Hausdorff measure and the open set condition for selfconformal sets.Proc.Amer.Math.Soc.,129(9):2689-2699,2001.
[14]Martin P.W.Zerner.Weak separation properties for self-similar sets.Proc.Amer.Math.Soc.,124(11):3529-3539,1996.
[15]K.J.Falconer,Fractal Geometry:Mathematical Foundations and Applications.Wiley,46(4):499,2003.
作者簡介:罗伟杰(1992-),男,汉族,广东珠海人,华南理工大学数学学院,硕士,研究方向:分形几何。