常 琴
(贵州大学电气工程学院,贵州贵阳,550025)
梯级水电站优化调度研究
常 琴
(贵州大学电气工程学院,贵州贵阳,550025)
本文首先从目标函数和约束条件两个方面,介绍了梯级水电站优化调度的各类数学模型。然后对目前研究比较广泛的各类优化算法进行了综述。最后指出随着水电能源的开发,梯级水库优化调度下一步可能的发展方向。
梯级水电;优化调度;优化算法
水电是传统的可再生能源,水电站能充分利用水资源进行发电以减少一次能源消耗。传统对于梯级水电站优化调度主要以发电量最大、耗水量最小、总蓄能最大为目标。但是随着电力市场的改革,单一考虑梯级水库的发电量已经不能满足电站的运行要求,在优化求解时必须考虑电量的时效性,因此兼顾分时上网电价的发电效益最大模型逐渐替代传统发电量最大模型。在单一目标优化发展较为成熟的条件下,如何协调梯级水库之间水电协调关系成为实践中的重要问题,基于此专家学者们提出了兼顾梯级水电站对发电和耗水需求的多目标优化调度模型,在保证水电调峰能力的同时,提高发电量,很好的解决梯级水电站不同量纲各种任务要求相互冲突的调度问题[1,2]。
1.1 目标函数
常用的水库优化调度模型大致可以分为两类[3]:①给定初、末水库水位状态,在调度期内以发电量最大、发电效益最大等为目标调节水量时空分布;②对于短期优化调度,常给定梯级电站总负荷指标以及负荷曲线,采取耗水量最小、期末蓄能最大、总耗能最小等作为目标函数对梯级水电站内部进行负荷分配。事实上,上述各种优化模型都能满足实际生产中的某种要求,但又难以满足所有条件的需求,即使配合大量的约束条件,任何一种调度模型也难以反映所有生产需要。为此,对梯级电站发电和用水的综合求优成为当前研究热点。
1.2 约束条件
梯级水电站优化运行通常采用到的约束条件包括以下。
(1) 机组运行约束
主要包括机组与流量的出力限制,即机组出力以及流量应控制在最大、最小范围内;为保证机组运行安全,机组不容许在低负荷区长期运行。
(2)电站运行约束
主要包括电站过水能力约束、最大装机容量约束以及站内机组可运行台数,其中电站内可运行机组台数与电站检修计划有关,且一般能给出点站内最大可运行的机组数,而最小机组数默认值为0,具体数值由运行操作人员决定。
(3)水库运行约束
主要包括水库库容上下限约束、水量平衡约束、调度期末水位约束、调度期内用水量约束、水库蓄能约束等。其中,还包括工业、灌溉、生态用水要求,航运对下泄流量的要求,防洪对水位的要求等。
2.1 系统分析方法
系统分析方法主要分为两大类:数学规划及概率模型。本节主要介绍对目前在梯级水电优化系统中应用较多的几种数学规划方法。
线性规划是数学规划领域内应用最广泛的一种规划方法,但梯级水库目标函数约束条件等均为非线性函数关系,其运行特性决定了应用该方法时需对目标函数以及约束条件进行线性化处理,这会导致线性化后与原问题有一定的偏差且在引入变量的同时会增加问题的规模;非线性规划要求目标函数及约束条件均可解析表达,在理论上非常适合求解水电优化这类复杂非线性问题,但该方法在求解多维水资源系统时容易出现“维数灾”问题。在梯级水库优化求解时多采用罚函数将有约束优化问题转化为无约束优化问题,逐次线性规划法被认为是最有效的非线性规划方法[4];动态规划是水电站水库优化调度问题研究中应用最广泛的方法。为减少“维数灾”问题各国学者提出了各种改进动态规划法,如逐次逼近动态规划法、增量动态规划法、逐步优化算法、离散微增量动态规划等均在特定场合下得到了有效的应用。
2.2 智能优化算法
遗传算法是最具有代表性的进化算法,该方法本质上不依赖具体问题,因此它能够很好地处理多维优化问题。常用的遗传算法选择策略有轮盘赌选择法、随机遍历抽样法、局部选择法、锦标赛选择法等[5,6]。文献[7]建立了基于实数编码的小生境遗传算法NGA(Niche Genetic Algorithm),该方法利用实数进行编码,规避了传统二进制编码形式解码繁琐的缺点,提高了全局寻优能力避免“早熟”问题,且算法的效率和精度均有一定的提高;1950年,Eberhart博士和Kennedy博士提出了粒子群随机搜索算法[8]。它的主要原理是模拟寻找食物中的鸟,将捕食的鸟类抽象成“粒子”,每个粒子通过粒子自身的历史最优位置以及全局最优位置不断调整进行寻优操作,直到找到最优位置为止。文献[9]建立了一种基于组合导向曲线的水电站优化组合模型,并采用粒子群优化算法对模型进行优化计算,同时通过存储有效性指数法实现了梯级水库间存储分配,提高水资源合理利用率。
2.3 混合算法
国内外专家学者们将不同算法的优点结合起来形成混合算法,对解决水库群优化调度问题有了新的突破。例如,文献[10]利用基于logistic map的混沌序列确定差分进化算法的变异缩放因子和交叉概率因子,避免了差分进化算法依赖经验来判断其值的影响,加快了全局搜索的速度,同时对约束条件利用可行性规则的三种简单比较选择法与差分紧密结合,该方法吸收了罚函数化将有约束化为无约束的优点,但克服了罚函数惩罚因子不易确定的不足,为智能优化算法处理约束条件提供了一种极具参考意义的方法。文献[11]以文化混合作为框架、克隆选择作为搜索空间,构思并提出了一种基于克隆原理的文化混合算法,该算法在信任空间重新定义了三种知识结构,以提高搜索的目的性和准确性达到提高算法的精度和效率;在置信空间中进行重组和混沌搜索操作以加快算法的收敛速度。
2.4 多目标优化调度
对于多目标优化的求解主要分为两类,一类是基于Pareto最优解的求解方法,另一类是先将其转换为单目标再进行计算[12]。在求解时它们均存在一定的不足之处,其中前者求解后得到的不是一个最优解而是一组非劣解集,怎样在非劣解集中选择最终优化结果目前还没有通用的方法,主要取决于决策者,具有一定的主观性;而后者这种先决策后搜索的寻优模式优化结果依赖于多目标向单目标转化的方式和目标权重等因素,需花大量的时间选择参数。
文献[13]在解决多目标优化问题时,首先利用混合整数建模方法将非线性性约束线性化处理,然后建立各个单目标隶属度函数,将多目标问题转化成为单目标规划问题再进行求解。文献[14]采用最大模糊满意度法将模糊多目标优化问题转化为单目标线性问题,然后应用协调粒子群算法进行求解。文献[15]以澜沧江干流景洪—橄榄坝梯级水电站为工程背景,针对电网调峰与河道通航需求构建多目标优化调度模型,并提出一种基于NSGA-Ⅱ的多目标混合搜索算法对模型进行求解,在搜索过程中引入多种约束处理策略,同时通过改进的遗传操作引导种群进化方向,实现多目标高速搜索,以快速获得满意的Pareto解集。
本文围绕梯级水电站水资源综合优化问题,基于国内外现有研究成果,从目标函数、约束条件以及模型求解方法三个方面进行了详述要从经典优化算法和现代智能算法两个层面总结不同算法的优缺点。
然而,随着我国水能电源的持续开发,大型水电所承担的防洪、发电、供水、航运等任务日益繁重,水电站群科学优化管理问题尤为凸出,如何实现水资源在多个目标之间的高效利用将成为研究的重点和难点。此外,水利工程的建设造成河流生态系统的破坏,为促进流域社会、经济、环境可持续发展,生态问题逐渐成为水电优化调度研究中必须考虑的一个重要因素。开展水利工程应在强调社会经济利益的同时将生态利益提高到应有的位置,生态调度将是现在及将来水库优化工程需要突破的一个难点。
[1]武新宇,范祥莉,程春田,等. 基于灰色关联度与理想点法的梯级水电站多目标优化调度方法[J]. 水利学报,2012,43(4): 422-428.
[2]张勇传. 水电站经济运行原理[M]. 北京:中国水利水电出版社,1998.
[3]方晶. 基于负荷分配的梯级水电站群优化补偿调度研究[D].大连:大连理工大学,2011.
[4]Sushil Kumar,R. Naresh. Efficient real coded genetic algorithm to solve the non-convex hydrothermal scheduling problem [J]. Electrical Power and Energy Systems,2007,29(10):738-747.
[5]Li-Chiu Chang. Guiding rational flood operation using penalty-type genetical gorithm [J]. Joural of Hydrologu,2008,354(1-4):65-74.
[6]Kennedy James, Eberhart Russell. Particle swarm optimization[C]// Proceedings of IEEE International Conference on Neural Networks, 1995.
[7]Tinghong Zhao, Zibin Man, Xueyi Qi. The United Optimal Operation System of Cascade Hydropower Stations Based on Multi-Agent[C]// 2008 Fourth International Conference on Natural Computation,2008.
[8]Shenglian Guo, Xiang Li, Pan Liu, Fuqiang Guo. Optimal Operation of Cascade Hydropower Plants[C]//2009 Asia-Pacific Power and Energy Engineering Conference,2009.
[9]刘攀,郭生练,庞博,等. 三峡水库运行初期蓄水调度函数的神经网络模型研究与改进[J]. 水力发电学报,2006,25(2):84-88.
[10]王亮. 差分进化算法在梯级水电站短期优化调度中的应用[D]. 武汉:华中科技大学,2009.
[11]Hui Qin, Qingqing Li, Xiaofeng Hong. A Hybrid Cultural Algorithm Based on Clonal Selection Principle for Optimal Generation Scheduling of CascadedHydropower Stations[C]// Proceedings 2013 International Conference on Mechatronic Sciences,Electric Engineering and Computer (MEC), 2013.
[12]武新宇,范祥莉,程春田,等. 基于灰色关联度与理想点法的梯级水电站多目标优化调度方法[J]. 水利学报,2012,43(4): 422-428.
[13]吴杰康,郭壮志,丁国强. 采用梯级水电站动态弃水策略的多目标短期优化调度[J]. 中国电机工程学报,2011,31(4):15-23.
[14]胡国强,贺仁睦. 梯级水电站多目标模糊优化调度模型及其求解方法[J]. 电工技术学报,2007,22(1): 154-158.
[15牛文静,申建建,程春田,等. 耦合调峰和通航需求的梯级水电站多目标优化调度混合搜索方法[J]. 中国电机工程学报,2016,36(9):2331-2341.
Study on Optimal Operation of Cascaded Hydropower Stations
Chang Qin
(College of Electrical Engineering,Guizhou University,Guiyang Guizhou,550025)
This paper introduces the mathematical model for optimal scheduling of cascade hydropower stations from the two aspects of the objective function and constraints Then, the various kinds of optimization algorithms are reviewed Finally, it points out that the possible development direction of the optimal operation of cascade reservoirs with the development of hydropower resources
cascade hydropower station; optimal scheduling;optimization algorithm