入侵蓝藻
——拟柱胞藻的分布特征及生理生态研究进展

2017-04-10 13:11雷腊梅雷敏婷赵莉阮紫曦于婷彭亮韩博平
生态环境学报 2017年3期
关键词:水华蓝藻水体

雷腊梅,雷敏婷,赵莉,阮紫曦,于婷,彭亮,韩博平

暨南大学生命科学技术学院,广东 广州 510632

入侵蓝藻
——拟柱胞藻的分布特征及生理生态研究进展

雷腊梅*,雷敏婷,赵莉,阮紫曦,于婷,彭亮,韩博平

暨南大学生命科学技术学院,广东 广州 510632

拟柱胞藻(Cylindrospermopsis raciborskii)因能产生蓝藻毒素、形成水华并具入侵特性,导致严重的公众健康和环境安全问题而在近年备受关注。拟柱胞藻被认为是热带特征性种类,但在过去的20多年中,研究发现该藻广泛出现在包括北欧在内的亚热带和温带地区水体,这表明拟柱胞藻已成为一个广布性入侵种类。系统地理学研究确认该藻属热带起源,提出两个假说解释其在世界范围内的扩散。拟柱胞藻的成功入侵被认为与该藻的生理生态可塑性有关,该藻喜好高温,耐阴性强,但却可以耐受较宽的温度和光强波动,这种适应性是其在温带到热带水体都广泛存在的基础。拟柱孢藻在氮利用上被认为是广幅种,可利用NH4+、NO3-、有机氮等不同形态的氮以解决缺氮危机;在氮不足的环境中,它能形成异形胞自行固氮而获得生长优势。拟柱孢藻拥有快速吸收和储存无机磷的能力以适应低磷环境,故其可在磷浓度极低的环境中占据优势。此外,拟柱孢藻的产毒能力可能有助于其营养摄取和捕食防御,其他因子如盐度、化感作用都可能在拟柱胞藻的地理扩散中起重要作用。文章较全面地总结了拟柱胞藻对不同环境因子的适应性,阐明了该藻入侵的生理生态策略。

拟柱胞藻;分布;生理生态;入侵

由于工农业迅速发展,人类活动过于频繁,环境污染日趋严重,水体富营养化成为目前全球各国面临的重大环境和生态问题之一。蓝藻水华是湖泊富营养化的典型表征之一,蓝藻的大量繁殖,改变了水体的理化环境,水体透明度降低,溶解氧减少,有些有害藻类还能够产生并释放毒素,对水环境健康、生物安全及经济发展造成了严重的负面影响(De Figueiredo et al.,2004)。伴随着全球气候变暖,蓝藻水华规模和持续时间都有加剧的趋势(O’Neil et al.,2012),同时出现了新的水华蓝藻类型,其中拟柱胞藻(Cylindrospermopsis raciborskii)备受关注。

淡水入侵蓝藻——拟柱胞藻最早被发现于热带亚热带气候区。在过去的十多年中,关于拟柱胞藻的生态学和毒理学特性的研究日益增加,主要有以下两个原因:一是因为该藻不断向不同的水生态系统扩展,这种趋势随着全球变暖和水体富营养化可能进一步加剧(O’Neil et al.,2012;Sinha et al., 2012);二是拟柱胞藻具备产生多种毒素的能力,其中最常见的为CYN(Cylindrospermopsin),它可抑制蛋白合成,损伤DNA,具广泛的细胞毒性,可作用于大量的水生、半水生植物和动物及其他浮游植物;另外,CYN还可以在生物中富集和转移,这使得该毒素的环境影响延伸至陆生生物,严重危害人类健康(Kinnear,2010)。

中国是世界上水体富营养化最严重的国家之一,蓝藻水华在湖泊、池塘以及河流等各种淡水水体中频繁发生。长期以来微囊藻基本成为中国有毒有害蓝藻的代名词,对其他水华蓝藻的研究极为匮乏(谢平,2015)。拟柱胞藻已在中国广东、云南、湖北、福建及台湾等多个省份发现,且能够产生CYN(Wu et al.,2011;Yamamoto et al.,2012;Yang et al.,2017)。在南亚热带的广东省,该藻已是许多水库的常见和优势种类,更在三坑、塘坑边、镇海等多个水库中形成水华,相对生物量可达93%以上,拟柱胞藻已经逐渐取代微囊藻成为危害该地区水库供水安全的首要蓝藻(Lei et al.,2014;赵莉等,2017)。为深入了解拟柱胞藻在中国及全球范围内成功快速扩张的原因,本文将对国内外研究进行归纳总结,重点阐述拟柱胞藻在全球范围内的分布以及其适应环境的生理生态特征,探讨其在多种环境中获得竞争优势的生理生态策略。

1 拟柱胞藻的分类

早期对拟柱胞藻的分类鉴定较为混乱,曾被划分为拟鱼腥藻属(Anabaenopsis)、尖头藻(Raphidiopsis)和柱孢藻属(Cylindrospermum)等(Jeeji-Bai et al.,1977)。1969年,在巴西Paranoá水库发生的拟柱胞藻水华,因其外部形态特征与束丝藻( Aphanizomenon flosaquae)相似,被划分为束丝藻属,后来有研究发现拟柱胞藻的自然种群能够形成异形胞,又将其划分为拟鱼腥藻,但进一步的研究发现其异形胞的形成方式与拟鱼腥藻有很大区别,与柱孢藻属更为相似(Lagos et al.,1999)。Hindák(1988)在斯洛伐克西部湖泊自然种群中发现拟柱胞藻的异形胞由藻丝末端细胞形成,拟鱼腥藻的异形胞则在藻丝中间成对出现,进一步证实了拟柱胞藻不同于拟鱼腥藻。拟柱胞藻藻丝末端尖细状,具伪空泡,厚壁孢子出现在藻丝一端或两端,距异形胞1~3个营养细胞,Komárek et al.(1991)依据这些形态特征将其从柱孢藻属划分出来,并命名为拟柱胞藻属。目前根据形态学特征分类,拟柱胞藻属共有8个种,其中关于C. raciborskii的研究报道最多(Saker et al.,2001)。

近年来,许多学者运用分子生物学手段来揭示蓝藻种群遗传进化特点及种类鉴别,对拟柱胞藻的研究也不例外。有研究者通过分析澳大利亚、德国、葡萄牙、巴西和美国等地理分布区拟柱胞藻的固氮酶基因nifH和16S rDNA序列,将其划分为美国、欧洲和澳大利亚3个类群。Dyble et al.(2002)以PC-IGS基因序列作为分子标记研究拟柱胞藻遗传多样性,又将其分为美国和欧洲—澳大利亚2个类群(Neilan et al.,2003)。Gugger et al.(2005)以ITS基因序列作为分子标记,将欧洲、美国、澳大利亚和非洲地区的拟柱胞藻划分为美国、欧洲和澳大利亚—非洲3个类群。Wilson et al.(2000)通过分析澳大利亚地区的2种形态特征(直线形和卷曲形)拟柱胞藻的16S rDNA、rpoC1、nifH和PC-IGS基因序列发现,2种形态类型的拟柱胞藻具有相似的遗传特征。因此,将形态学分类方法与分子生物学手段结合起来有助于对拟柱胞藻进行精确分类鉴定。

2 拟柱胞藻的分布与扩散

拟柱胞藻最初被认为是热带和亚热带特征性种类,自首次在印度爪洼岛发现以来,有大量的报道称其在澳大利亚北部、南美洲、非洲等国家或地区的湖泊和水库中存在并成为优势种(Fabbro et al.,1996)。在过去20多年,拟柱胞藻在温带地区出现的频率明显增加,已经遍布整个欧洲和澳大利亚,近年来在法国、波兰、日本、加拿大、新西兰、美国等国家的水体中都有发现拟柱胞藻(Briand et al.,2002;Kokociński et al.,2009;Sinha et al.,2012),在中国的广东、云南、湖北及台湾地区水体中也有发现(Wu et al.,2011;Yamamoto et al.,2012;Lei et al.,2014)。到目前为止,包括南半球和北半球在内的全球范围内不断有国家报告拟柱胞藻的出现,其发生的水体包括河流、浅水水体、湖泊和水库。近年来拟柱胞藻报道频率的升高被认为与人们对该藻的关注持续增加有关,但更多研究认为拟柱胞藻具有较强的适应能力,随着全球气候变暖,其种群分布不断由热带亚热带地区向温带地区扩散(Roijackers et al.,2007;Paerl et al.,2008)。

关于拟柱胞藻在世界范围内的扩散有2个假设。第一个认为其首要的起源中心是非洲,非洲地区湖泊中拟柱胞藻种群具有多样性,能够适应低浓度氮磷营养盐环境,形成竞争优势,有助于其不断扩散至赤道地区的印度尼西亚和中美洲;其次的辐射中心是澳大利亚,它能解释拟柱胞藻向热带、亚热带和温带地区的扩散。澳大利亚的气候条件有助于筛选出耐低光的温带拟柱胞藻入侵株系,而这个过程在热带地区的非洲是不可能发生的。从澳大利亚向外扩散的途径可能有两条:(1)通过鸟类或无意识的人类活动,通过海洋向北美和南美扩散;(2)通过鸟类和河流,从大陆向中亚直至欧洲大陆扩展(Padisák,1997)。近期提出的拟柱胞藻增殖假说则认为它的入侵不是来自于非洲或澳大利亚,而是每个大陆的温暖避难区。这个假说认为该藻在更多温带环境下的扩展是这样发生的:在多冰期和更新世时期的气候变化下,拟柱胞藻得以存活下来,随着近年来的温度上升而在更多的地区生长(Gugger et al.,2005)。

有研究表明拟柱胞藻不断由热带亚热带地区向温带地区扩散与1960年后全球气候变暖有关(Wiedner et al.,2007)。Briand et al.(2004)通过研究热带和温带地区的多株拟柱胞藻的生理生态学特征发现:不同地理分布的拟柱胞藻生长所需的光照条件相似,对环境变化具有较强的适应能力。拟柱胞藻向温带地区扩散的原因为(1)全球气候变暖,导致水体温度上升;(2)拟柱胞藻具有较宽的温度适应范围;(3)拟柱胞藻依靠选择不同生态类型来适应温带地区的低温低光照条件。

3 拟柱胞藻的生理生态特性

3.1 温度

来源于世界各地的拟柱胞藻藻株能耐受较宽的温度波动,这使得它能在冬季维持一定的种群数量(Briand et al.,2004;Chonudomkul et al.,2004;Soares et al.,2013),拟柱胞藻可在温度低至12 ℃时存活,甚至在11 ℃时其生物量仍高达浮游植物总生物量的95%(Bonilla et al.,2012;Dokulil et al.,2016);在温度高达35~39 ℃时,拟柱胞藻依然能获得净生长(Piccini et al.,2011;Kovács et al.,2016)。利用分离自温带和热带地区的拟柱胞藻进行的生长实验表明,这些藻株在12~39 ℃下均可获得净生长(Chonudomkul et al.,2004;Everson et al.,2011;Kovács et al.,2016),这种低温耐受和对较宽温度范围的适应性是其在温带到热带水体都广泛存在的基础。作为热带特征性种类,其最佳生长温度普遍在25 ℃以上,模拟数据也表明拟柱胞藻水华的发生温度为25~32 ℃(Recknagel et al.,2014)。因此拟柱胞藻可在热带水体中常年占据优势乃至形成持续性水华,但在亚热带和温带地区,该藻仅能在夏季较高的温度条件下形成优势种(Wiedner et al.,2007;Everson et al.,2011;Sinha et al.,2012)。

拟柱胞藻另一个显著的特点是在高温下比其他蓝藻生长更快(Bonilla et al.,2012),显著受益于气候变暖下的水温升高。越来越多的研究者认为气候变化可能导致蓝藻水华的组成向着有利于包括拟柱胞藻在内的入侵种类的方向发展(Mehnert et al.,2010)。这个现象已被很多研究证实,如在塞内加尔的Guiers湖,拟柱胞藻的高生物量与高温和水体的稳定性直接相关(Berger et al.,2006);Wiedner et al.(2007)在德国一些湖泊的研究明确显示,拟柱胞藻的生长启动是受温度控制的,并认为拟柱胞藻入侵至这些水体是全球气候变化的结果。拟柱胞藻形成的孢子等休眠体可在17 ℃或22~23 ℃萌发(Briand et al.,2002),春天变暖的提前有利于休眠体早些萌发,从而对本地种显示出竞争优势(Mehnert et al.,2010)。

3.2 光照

拟柱胞藻可耐受不同的光强,研究发现其可发生于不同光强的水体中。Fabbro et al.(1996)在澳大利亚一个水库中发现拟柱胞藻发生水华时水体表面光强最大值达到2500 μmol·m-2·s-1;Bouvy et al.(1999)在巴西水体中发现拟柱胞藻发生水华时水体光照强度变化范围为14~830 μmol·m-2·s-1(Pierangelini et al.,2014);而奥地利富营养化湖泊中拟柱胞藻种群大量增殖时的光强范围为200~600 μmol·m-2·s-1,同时发现拟柱胞藻的光合速率在30~60 µmol·m-2·s-1光强下达到饱和(Dokulil et al.,1996)。由此可见,拟柱胞藻对光照具有较宽的适应范围,能够适应高光强,这是因为其具有伪空泡,在高光强条件下能向水体下层迁移,避免强光伤害(Padisák et al.,1998;Shafik,2003)。

拟柱胞藻同时还对低光强有极强的耐受能力,属于耐阴种,且能够在低光强水体中获得竞争优势(Reynolds et al.,2002)。实验室的研究表明该藻具有较低的最适生长光强(Briand et al.,2004;Kovács et al.,2016),野外调查也发现它能在透明度很低的条件下成为优势种(O’Brien et al.,2009;Yamamoto et al.,2012)。低光强耐受性被认为是拟柱胞藻所具有的最重要的生态优势之一,有利于该藻的成功入侵。

3.3 氮营养盐

由于拟柱胞藻具固氮能力,能在N2的固定和氮营养盐的同化这两个过程中交替,以应对氮元素在环境中的变化,因此在氮利用上被认为是广幅种(Moisander et al.,2012)。当水体中无机氮浓度较低时,藻类生长受到限制,而研究发现拟柱胞藻在低浓度无机氮的水体中仍然能够存在并占优势,这与其灵活吸收利用氮源的机制有关。拟柱胞藻能够利用不同的氮源,在NH4+环境中生长的拟柱胞藻具有最大生长速率,其次是NO3-,最后是有机氮源(Présing et al.,1996;Padisák,1997;Saker et al.,2001;Herrero et al.,2004)。与其他藻类相比,拟柱胞藻吸收利用NH4+-N的阈值较低,有利于其在缺氮的水体中获得竞争优势,优先获取氮源;有研究显示,在高氨浓度下,拟柱胞藻比浮游蓝丝藻生长更快,这意味着拟柱胞藻可与温带地区的本地种进行竞争(Ammar et al.,2014)。当水体中氮源消耗殆尽,拟柱胞藻能够产生末端异形胞,固定氮气来维持生长(Hong et al.,2006),这种能力赋予拟柱胞藻一定的生态优势,有助于其在湖泊水库中成为优势种,尤其是相对于非固氮蓝藻而言(Hadas et al.,2012)。

3.4 磷营养盐

就溶解性无机磷(DIP)的利用而言,拟柱胞藻被认为是机会主义者。该种对磷的摄取亲和力和储存能力均非常高,这些特性在某些条件下是有利的,如水体中磷浓度上下波动,或营养盐具垂直梯度变化(Isvánovics et al.,2000;Wu et al.,2009)。大量研究表明在拟柱胞藻出现的水体中,溶解无机磷浓度变化范围较广(Vincent,2002;Vidal et al.,2008),但低磷环境显著有利于拟柱胞藻获得生长优势。在法国的一个池塘中,拟柱胞藻的增殖与高温和相对较低的氮磷营养盐相关(Posselt et al.,2009),研究发现拟柱胞藻往往在高氮低磷的水体中达到较高生物量(Dolman et al.,2012)。初步认为拟柱胞藻拥有快速吸收和储存无机磷的能力(Isvánovics et al.,2000),从而适应低磷环境;另外它的胞外碱性磷酸酶活性较高,能有效裂解并利用有机磷(Wu et al.,2009),这使得拟柱胞藻在磷浓度极低的环境中仍占剧优势(Burford et al.,2006)。测序表明它的基因组中存在多个与磷摄取和利用相关的基因(Stucken et al.,2010),这些基因赋予该藻在低磷环境中扩张的能力,使得其优势度常常在低磷条件下表现得更为明显(Burford et al.,2006;Posselt et al.,2009);在无机氮供应充足的情况下,拟柱胞藻甚至在磷限制下生长更快(Kenesi et al.,2009)。然而,在高磷的环境中,拟柱胞藻较高的磷吸收能力并不占任何优势,在这种情况下,拟柱胞藻与其他物种间竞争的决定性因素可能是氮的吸收速率(Borics et al.,2000)。因此在解释各营养盐在拟柱胞藻生长中的作用时,需要共同考虑拟柱胞藻对不同营养盐的吸收策略。

3.5 产毒

拟柱胞藻具产生多种毒素的能力,其中最常见的为CYN,其次为STX(Saxitoxin)(Lagos et al.,1999;Fastner et al.,2003;Willis et al.,2016)。人们发现拟柱胞藻的“产毒型”似乎呈现较规律的地理分布特点,如CYN主要由大洋洲和亚洲水体分离的拟柱胞藻株系产生(Jiang et al.,2014;Willis et al.,2016),欧洲和北美水体的株系则不产生CYN(Fastner et al.,2003;Yilmaz et al.,2008),南美株系主要产生STX(Lagos et al.,1999)。初步推测这种“产毒型”的地理格局是地区性环境下的选择压力不同所致,因此拟柱胞藻的产毒能力可能在其扩张和增殖过程中发挥重要作用。

Sinha et al.(2014)在对不产毒和产CYN的拟柱胞藻藻株的基因组进行比较时发现,两者在胁迫和适应性基因上存在显著差异,推测CYN的产生与拟柱胞藻的生理适应性相关(Sinha et al.,2014)。有研究显示CYN在蓝藻磷利用方面起着重要作用,在无机磷不足的水体中,CYN可诱导其他浮游植物过度分泌碱性磷酸酶,从而使产CYN的颤藻获得生长所需的无机磷,这使得蓝藻自身无需消耗大量能量合成碱性磷酸酶,因此其处于竞争上的有利地位(Bar-Yosef et al.,2010)。CYN可对许多水生生物产生毒性作用,这使得产毒拟柱胞藻具抗捕食防御能力(Holland et al.,2013),可在种群竞争中获得优势。

3.6 其他因素

拟柱胞藻偏好高pH值的生长环境,通常出现在pH值为8.0~8.7水体中,在pH值为7.3~7.8的湖泊中拟柱胞藻也可发生,同时有研究发现拟柱胞藻在pH值为9.2~9.3的水体中仍可存活,但在偏酸性水体中未发现拟柱胞藻(Bowling,1994;Branco et al.,1994)。拟柱胞藻偏好低盐度环境,其最适生长出现在淡水或寡盐条件下(Chapman,1997),盐度的上升可限制拟柱胞藻的生长(Moisander et al.,2012)。但也有研究发现拟柱胞藻可生长在微咸水湖中,对盐度具有一定的耐受性,可出现在高达2%的盐度环境中(Calandrino et al.,2011;Moisander et al.,2012)。具有能利用红光的色素和伪空泡也可提高拟柱胞藻的竞争优势,因为漂浮调节能力有助于其在贫营养的水体中向下迁移利用底部丰富的营养盐,还可躲避水体表面的强光刺激(Padisák et al.,1998;Carey et al.,2012)。最近有研究推断化感作用对拟柱胞藻的地理扩散也有重要作用,被认为是拟柱胞藻在温带气候中扩张的一个优势机制(Cleberc et al.,2007)。这可能是由于本地种与拟柱胞藻缺少长期的共存生活,因此不能忍受拟柱胞藻所产生的化感物质(Fitter,2003)。

4 结语

大量的研究表明拟柱胞藻具有一些生理生态共性,如表型可塑性强,对光照温度等关键生长因子有较宽的生态辐(Kokociński et al.,2010),良好的漂浮能力,耐受低光强,能固氮,对磷有较高的亲和力且具有储存磷的能力,能够产毒等(Antunes et al.,2015)。上述特征使得拟柱胞藻能适应各种气候条件,使其能在复杂多变的环境下生长并在合适的条件下爆发形成水华。

但最近的研究结果认为拟柱胞藻拥有表型和遗传上不同的多种生态型,即使在同一地区甚至同一水体,拟柱胞藻表现出的环境偏好差异性仍达显著(Piccini et al.,2011;Yamamoto et al.,2014),这导致全球不同水体中,影响拟柱胞藻获得竞争优势的因素差异较大。如巴西的Ingazeira水库,卷曲状拟柱胞藻的平均比例可达97%,因厄尔尼诺现象导致的降水不足和水体交换缺乏是导致拟柱胞藻水华发生的主要原因(Bittencourt-Oliveira et al.,2012);而在巴西的另一个水库中,微囊藻只能在捕食压力很小的情况下形成水华,而拟柱胞藻则可在捕食压力高的条件下占据优势(Soares et al.,2009);在台湾北部的池塘中,拟柱胞藻可在透明度很低的条件下成为优势种,而秋季降水冲刷、水体交换被认为是拟柱胞藻消失的关键因子(Yamamoto et al.,2012)。

综上所述,拟柱胞藻在全球的成功扩张和形成优势的过程常常是多个环境因子共同参与,因此将来的研究不仅仅要关注拟柱胞藻的生理生态共性,更应了解有不同环境需求的生态型,从而更好地评估拟柱胞藻在某一地域的扩张潜力和发展趋势。另外,作为一种产毒蓝藻,目前对拟柱胞藻产毒的遗传学基础已有较好的了解,但关于产毒拟柱胞藻的发生和产毒机制,以及毒素在其全球扩张中的作用仍知之甚少。目前,中国对拟柱胞藻的发生发展机制研究极为薄弱,加强这方面的研究将有助于评估拟柱胞藻这种新型蓝藻水华对中国水生态安全的危害水平,可为有效控制拟柱胞藻水华的发生提供科学依据。

AMMAR M, COMTE K, TRAN T D C, et al. 2014. Initial growth phases of two bloom-forming cyanobacteria (Cylindrospermopsis raciborskii and Planktothrix agardhii) in monocultures and mixed cultures depending on light and nutrient conditions [J]. Annales De Limnologie-International Journal of Limnology, 1051(50): 231-240.

ANTUNES J T, LEÃO P N, VASCONCELOS V M. 2015. Cylindrospermopsis raciborskii: review of the distribution, phylogeography, and ecophysiology of a global invasive species [J]. Frontiers in Microbiology, 6: 1-13.

BAR-YOSEF Y, SUKENIK A, HADAS O, et al. 2010. Enslavement in the water body by toxic Aphanizomenon ovalisporum, inducing alkaline phosphatase in phytoplanktons [J]. Current Biology Cb, 20(17): 1557-1561.

BERGER C, BA N, GUGGER M, et al. 2006. Seasonal dynamics and toxicity of Cylindrospermopsis raciborskii in lake Guiers (Senegal, West Africa) [J]. Fems Microbiology Ecology, 57(3): 355-366.

BITTENCOURT-OLIVEIRA M C, DIAS S N, MOURA A N, et al. 2012. Seasonal dynamics of cyanobacteria in a eutrophic reservoir (Arcoverde) in a semiarid region of Brazil [J]. Brazilian Journal of Biology, 72(3): 533-544.

BONILLA S, AUBRIOT L, SOARES M C S, et al. 2012. What drives the distribution of the bloom-forming cyanobacteria Planktothrix agardhii and Cylindrospermopsis raciborskii [J]. Fems Microbiology Ecology, 79(3): 594-607.

BORICS G, GRIGORSKI I, SZABÓ S, et al. 2000. Phytoplankton associations under changing pattern of bottom-up vs top-down control in a small hypertrophic fishpond in East Hungary [J]. Hydrobiologia, 424(1): 79-90.

BOUVY M, MOLICA R, OLIVEIRA S, et al. 1999. Dynamics of a toxic cyanobacterial bloom (Cylindrospermopsis raciborskii) in a shallow reservoir in the semi-arid region of northeast Brazil [J]. Aquatic Microbial Ecology, 20(3): 285-297.

BOWLING L. 1994. Occurrence and possible causes of a severe cyanobacterial bloom in Lake Cargelligo, New South Wales [J]. Marine & Freshwater Research, 45(5): 737-745.

BRANCO C W C, SENNA P A C. 1994. Factors influencing the development of Cylindrospermopsis raciborskii and Microcystis aeruginosa in the Paranoá Reservoir, Brasília, Brazil [J]. Algological Studies, 75: 85-96.

BRIAND J F, LEBOULANGER C, HUMBERT J F, et al. 2004. Cylindrospermopsis raciborskii (cyanobacteria) invasion at mid-latitudes: selection, wide physiological tolerance, or global warming [J]. Journal of Phycology, 40(2): 231-238.

BRIAND J F, ROBILLOT C, QUIBLIER-LLOBÉRAS C, et al. 2002. Environmental context of Cylindrospermopsis raciborskii (Cyanobacteria) blooms in a shallow pond in France [J]. Water Research, 36(13): 3183-3192.

BURFORD M A, MCNEALE K L, MCKENZIE-SMITH F J. 2006. The role of nitrogen in promoting the toxic cyanophyte Cylindrospermopsis raciborskii in a subtropical water reservoir [J]. Freshwater Biology, 51(11): 2143-2153.

CALANDRINO E S, PAERL H W. 2011. Determining the potential for the proliferation of the harmful cyanobacterium Cylindrospermopsis raciborskii in subtropical water reservoir [J]. Journal of Phycology, 45: 540-546.

CAREY C C, IBELINGS B W, HOFFMANN E P, et al. 2012. Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate [J]. Water Research, 46(5): 1394-1407.

CHAPMAN A D, SCHELSKE C L. 1997. Recent appearance of Cylindrospermopsis (Cyanobacteria) in five hypereutrophic Florida lakes [J]. Journal of Phycology, 33: 191-195.

CHONUDOMKUL D, YONGMANITCHAI W, THEERAGOOL G, et al. 2004. Morphology, genetic diversity, temperature tolerance and toxicity of Cylindrospermopsis raciborskii (Nostocales, Cyanobacteria) strains from Thailand and Japan [J]. Fems Microbiology Ecology, 48(3): 345-355.

CLEBERC F, ALESSANDRA G, DAVIDF B, et al. 2007. Does allelopathy contribute to Cylindrospermopsis raciborskii (cyanobacteria) bloom occurrence and geographic expansion [J]. Journal of Phycology, 43(2): 256-265.

DE FIGUEIREDO D R, AZEITEIRO U M, ESTEVES S M, et al. 2004. Microcystin-producing blooms—a serious global public health issue [J]. Ecotoxicology & Environmental Safety, 59(2): 151-163.

DOKULIL M T, MAYER J. 1996. Population dynamics and photosynthetic rates of a Cylindrospermopsis-Limnothrix association in a highly eutrophic urban lake, Alte Donau, Vienna, Austria [J]. Journal of Agronomy & Crop Science, 83(1): 179-195.

DOKULIL, MARTIN T. 2016. Vegetative survival of Cylindrospermopsis raciborskii (Cyanobacteria) at low temperature and low light [J]. Hydrobiologia, 764(1): 241-247.

DOLMAN A M, RÜCKER J, PICK F R, et al. 2012. Cyanobacteria and cyanotoxins: the influence of nitrogen versus phosphorus [J]. Plos One, 7(6): e38757.

DYBLE J, PAERL H W, NEILAN B A. 2002. Genetic characterization of Cylindrospermopsis raciborskii (Cyanobacteria) isolates from diverse geographic origins based on nifH and cpcBA-IGS nucleotide sequence analysis [J]. Applied & Environmental Microbiology, 68(5): 2567-2571.

EVERSON S, FABBRO L, KINNEAR S, et al. 2011. Extreme differences in akinete, heterocyte and cylindrospermospsin concentrations with depth in a successive bloom involving Aphanizomenon ovalisporum (Forti) and Cylindrospermopsis raciborskii (Woloszynska) Seenaya and SubbaRaju [J]. Harmful Algae, 10(3): 265-276.

FABBRO L D, DUIVENVOORDEN L J. 1996. Profile of a bloom of the cyanobacterium Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju in the Fitzroy River in tropical central Queensland [J]. Marine & Freshwater Research, 47(5): 685-694.

FASTNER J, HEINZE R, HUMPAGE A R, et al. 2003. Cylindrospermopsin occurrence in two German lakes and preliminary assessment of toxicity and toxin production of Cylindrospermopsis raciborskii (Cyanobacteria) isolates [J]. Toxicon, 42(3): 313-321.

FITTER A. 2003. Making allelopathy respectable [J]. Science, 301(5638): 1337-1338.

GUGGER M, MOLICA R, LE BERRE B, et al. 2005. Genetic diversity of Cylindrospermopsis strains (Cyanobacteria) isolated from four continents [J]. Applied & Environmental Microbiology, 71(2): 1097-1100.

HADAS O, PINKAS R, MALINSKY-RUSHANSKY N, et al. 2012. Appearance and establishment of diazotrophic cyanobacteria in Lake Kinneret, Israel [J]. Freshwater Biology, 57(6): 1214-1227.

HERRERO A, MURO-PASTOR A M, VALLADARES A, et al. 2004. Cellular differentiation and the NtcA transcription factor in filamentous cyanobacteria [J]. Fems Microbiology Ecology, 28(4): 469-487.

HINDÁK F. 1988. Planktonic species of two related genera, Cylindrospermopsis and Anabaenopsis, from western Slovakia [J]. Archiv Für Hydrobiologie, 80: 283-302.

HOLLAND A, KINNEAR S. 2013. Interpreting the possible ecological role(s) of cyanotoxins: compounds for competitive advantage and or physiological Aide [J]. Marine Drugs, 11(7): 2239-2258.

HONG Y, STEINMAN A, BIDDANDA B, et al. 2006. Occurrence of the toxin-producing cyanobacterium Cylindrospermopsis raciborskii in Mona and Muskegon Lakes, Michigan [J]. Journal of Great Lakes Research, 32(3): 645-652.

ISVÁNOVICS V, SHAFIK H M, PRÉSING M, et al. 2000. Growth and phosphate uptake kinetics of the cyanobacterium, Cylindrospermopsis raciborskii (Cyanophyceae) in throughflow cultures [J]. Freshwater Biology, 43(2): 257-275.

JEEJI-BAI N, NEGEWALD E, SOEDER C J. 1977. Revision and taxonomic analysis of the genus Anabaenopsis [J]. Archiv Für Hydrobiologie, 51 (Supplement): 3-24.

JIANG Y, XIAO P, YU G, et al. 2014. Sporadic distribution and distinctive variations of cylindrospermopsin genes in cyanobacterial strains and environmental samples from Chinese freshwater bodies [J]. Applied & Environmental Microbiology, 80(17): 5219-5230.

KENESI G, SHAFIK H M, KOVÁCS A W, et al. 2009. Effect of nitrogen forms on growth, cell composition and N fixation of Cylindrospermopsis raciborskii in phosphorus-limited chemostat cultures [J]. Hydrobiologia, 623(1): 191-202.

KINNEAR S H W. 2010. Cylindrospermopsin: a decade of progress on bioaccumulation research [J]. Marine Drugs, 8(3): 542-564.

KOKOCIŃSKI M, DZIGA D, SPOOF L, et al. 2009. First report of the cyanobacterial toxin cylindrospermopsin in the shallow, eutrophic lakes of western Poland [J]. Chemosphere, 74(5): 669-675.

KOKOCIŃSKI M, STEFANIAK K, MANKIEWICZ-BOCZEK K, et al. 2010. The ecology of the invasive cyanobacterium Cylindrospermopsis raciborskii (Nostocales, Cyanophyta) in two hypereutrophic lakes dominated by Planktothrix agardhii (Oscillatoriales, Cyanophyta) [J]. Journal of Phycology, 45: 365-374.

KOMÁREK J, KLING H. 1991. Variation in six planktonic cyanophyte genera in Lake Victoria (East Africa) [J]. Algological Studies, 61: 21-45.

KOVÁCS A W, PRÉSING M, VÖRÖS L. 2016. Thermal-dependent growth characteristics for Cylindrospermopsis raciborskii (Cyanoprokaryota) at different light availabilities: methodological considerations [J]. Aquatic Ecology, 50(4): 623-638.

LAGOS N, ONODERA H, ZAGATTO P A, et al. 1999. The first evidence of paralytic shellfish toxins in the freshwater cyanobacterium Cylindrospermopsis raciborskii, isolated from Brazil [J]. Toxicon, 37(10): 1359-1373.

LEI L, PENG L, HUANG X, et al. 2014. Occurrence and dominance of Cylindrospermopsis raciborskii and dissolved cylindrospermopsin in urban reservoirs used for drinking water supply, South China [J]. Environmental Monitoring & Assessment, 186(5): 3079-3090.

MEHNERT G, LEUNERT F, CIRÉS S, et al. 2010. Competitiveness of invasive and native cyanobacteria from temperate freshwaters under various light and temperature conditions [J]. Journal of Plankton Research, 32(7): 1009-1021.

MOISANDER P H, CHESHIRE L A, BRADDY J, et al. 2012. Facultative diazotrophy increases Cylindrospermopsis raciborskii competitiveness under fluctuating nitrogen availability [J]. Fems Microbiology Ecology, 79(3): 800-811.

NEILAN B A, SAKER M L, FASTNER J, et al. 2003. Phylogeography of the invasive cyanobacterium Cylindrospermopsis raciborskii [J]. Molecular Ecology, 12(1): 133-140.

O’BRIEN K R, BURFORD M A, BROOKES J D. 2009. Effects of light history on primary productivity in a phytoplankton community dominated by the toxic cyanobacterium Cylindrospermopsis raciborskii [J]. Freshwater Biology, 54(2): 272-282.

O’NEIL J M, DAVIS T W, BURFORD M A, et al. 2012. The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change [J]. Harmful Algae, 14: 313-334.

PADISÁK J, REYNOLDS C S. 1998. Selection of phytoplankton associations in Lake Balaton, Hungary, in response to eutrophication and restoration measures, with special reference to the cyanoprokaryotes [J]. Hydrobiologia, 384(1-3): 41-53.

PADISÁK J. 1997. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology [J]. Archiv Für Hydrobiologie Supplementband Monographische Beitrage, 107(4): 563-593.

PAERL H W, HUISMAN J. 2008. Blooms like it hot [J]. Science, 320(5872): 57-58.

PICCINI C, AUBRIOT L, FABRE A, et al. 2011. Genetic and eco-physiological differences of South American Cylindrospermopsis raciborskii isolates support the hypothesis of multiple ecotypes [J]. Harmful Algae, 10(6): 644-653.

PIERANGELINI M, STOJKOVIC S, ORR P T, et al. 2014. Photosynthetic characteristics of two Cylindrospermopsis raciborskii strains differing in their toxicity [J]. Journal of Phycology, 50(2): 292-302.

POSSELT A J, BURFORD M A, SHAW G, et al. 2009. Pulses of phosphate promote dominance of the toxic cyanophyte Cylindrospermopsis raciborskii in a Currituck Sound, North Carolina [J]. Harmful Algae, 11: 1-9.

PRÉSING M, HERODEK S, VÖRÖS L, et al. 1996. Nitrogen fixation, ammonium and nitrate uptake during a bloom of Cylindrospermopsis raciborskii in Lake Balaton [J]. Archiv Für Hydrobiologie, 136(4): 553-562.

RECKNAGEL F, ORR P T, CAO H. 2014. Inductive reasoning and forecasting of population dynamics of Cylindrospermopsis raciborskii in three sub-tropical reservoirs by evolutionary computation [J]. Harmful Algae, 31: 26-34.

REYNOLDS C S, HUSZAR V, KRUK C, et al. 2002. Towards a functional classification of the freshwater phytoplankton [J]. Journal of Plankton Research, 24(5): 417-428.

ROIJACKERS R M M, LÜRLING M F L L W. 2007. Climate change and bathing water quality [J]. Rapport, 101(1): 53-60.

SAKER M L, NEILAN B A. 2001. Varied diazotrophies, morphologies, and toxicities of genetically similar isolates of Cylindrospermopsis raciborskii (Nostocales, Cyanophyceae) from northern Australia [J]. Applied & Environmental Microbiology, 67(4): 1839-1845.

SHAFIK H M. 2003. Morphological characteristics of Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju in laboratory cultures [J]. Acta Biologica Hungarica, 54(1): 121-136.

SINHA R, PEARSON L A, DAVIS T W, et al. 2012. Increased incidence of Cylindrospermopsis raciborskii in temperate zones-is climate change responsible? [J]. Water Research, 46(5): 1408-1419.

SINHA R, PEARSON L A, DAVIS T W, et al. 2014. Comparative genomics of Cylindrospermopsis raciborskii strains with differential toxicities [J]. BMC Genomics, 15(1): 83-96.

SOARES M C S, LÜRLING M, HUSZAR V L M. 2013. Growth and temperature-related phenotypic plasticity in the cyanobacteriumCylindrospermopsis raciborskii [J]. Phycological Research, 61(1): 61-67.

SOARES M C S, ROCHA M I D A, MARINHO M M, et al. 2009. Changes in species composition during annual cyanobacterial dominance in a tropical reservoir: physical factors, nutrients and grazing effects [J]. Aquatic Microbial Ecology, 57(2): 137-149.

STUCKEN K, JOHN U, CEMBELLA A, et al. 2010. The smallest known genomes of multicellular and toxic cyanobacteria: comparison, minimal gene sets for linked traits and the evolutionary implications [J]. Plos One, 5(2): e9235.

VIDAL L, KRUK C. 2008. Cylindrospermopsis raciborskii (Cyanobacteria) extends its distribution to Latitude 34°53’S: taxonomical and ecological features in Uruguayan eutrophic lakes [J]. Pan-American Journal of Aquatic Sciences, 3(2): 142-151.

VINCENT W F. 2002. Cyanobacterial dominance in the polar regions [M]// The Ecology of Cyanobacteria. Netherlands: Springer: 321-340.

WIEDNER C, RÜCKER J, BRÜGGEMANN R, et al. 2007. Climate change affects timing and size of populations of an invasive cyanobacterium in temperate regions [J]. Oecologia, 152(3): 473-484.

WILLIS A, CHUANG A W, WOODHOUSE J N, et al. 2016. Intraspecific variation in growth, morphology and toxin quotas for the cyanobacterium, Cylindrospermopsis raciborskii [J]. Toxicon, 119: 307-310.

WILSON K M, SCHEMBRI M A, BAKER P D, et al. 2000. Molecular characterization of the toxic cyanobacterium Cylindrospermopsis raciborskii and design of a species-specific PCR [J]. Applied & Environmental Microbiology, 66(1): 332-338.

WU Z, SHI J, LI R. 2009. Comparative studies on photosynthesis and phosphate metabolism of Cylindrospermopsis raciborskii with Microcystis aeruginosa and Aphanizomenon flos-aquae [J]. Harmful algae, 8(6): 910-915.

WU Z, SHI J, XIAO P, et al. 2011. Phylogenetic analysis of two cyanobacterial genera Cylindrospermopsis and Raphidiopsis based on multi-gene sequences [J]. Harmful Algae, 10(5): 419-425.

YAMAMOTO Y, SHIAH F K. 2012. Factors related to the dominance of Cylindrospermopsis raciborskii (cyanobacteria) in a shallow pond in northern Taiwan [J]. Journal of Phycology, 48(4): 984-991.

YAMAMOTO Y, SHIAH F K. 2014. Growth, trichome size and akinete production of Cylindrospermopsis raciborskii (cyanobacteria) under different temperatures: Comparison of two strains isolated from the same pond [J]. Phycological Research, 62(2): 147-152.

YANG Y, JIANG Y, LI X, et al. 2017. Variations of growth and toxin yield in Cylindrospermopsis raciborskii under different phosphorus concentrations [J]. Toxins, 9(1): 13.

YILMAZ M, PHLIPS E J, SZABO N J, et al. 2008. A comparative study of Florida strains of Cylindrospermopsis and Aphanizomenon for cylindrospermopsin production [J]. Toxicon, 51(1): 130-139.

谢平. 2015. 蓝藻水华及其次生危害[J]. 水生态学杂志, 36(4): 1-13.

赵莉, 雷腊梅, 彭亮, 等. 2017. 广东省镇海水库拟柱胞藻(Cylindrospermopsis raciborskii)的季节动态及驱动因子分析[J]. 湖泊科学, 29(1): 193-199.

Review of the Distribution and Ecophysiology of An Invasive Cyanobacterial Species, Cylindrospermopsis raciborskii

LEI Lamei, LEI Minting, ZHAO Li, RUAN Zixi, YU Ting, PENG Liang, HAN Boping
Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China

Cylindrospermopsis raciborskii has been extensively studied and gained considerable attention for its toxicity, bloom formation and invasiveness, which have posed a serious problem to public and environmental health. C. raciborskii is typically ascribed to tropical distribution,but there are recent reports of its appearance in subtropical and temperate regions including northern Europe, which suggest that C. raciborskii has acquired the status of a cosmopolitan species. Phylogeography studies have confirmed a tropical origin of C. raciborskii and proposed two hypotheses on the worldwide dispersion of this species. The invasive success of C. raciborskii may be due to its ecophysiological plasticity. Although C. raciborskii prefers to higher temperatures and exhibits superior shade tolerance, this cyanobacteria is known to tolerate wide range of temperature and light intensity that may result in its global existence in tropical, subtropical and temperate regions. C. raciborskii is considered a generalist in terms of nitrogen usage because it can utilize different forms of nitrogen including ammonia, nitrate and urea, and under nitrogen limitation the heterocyst will be produced for N2fixation, leading to this species’ dominance. C. raciborskii has both a high uptake rate and high storage capacity for phosphorus which gives it an ecological advantage under low phosphorus conditions. The toxin production of C. raciborskii may play a role in nutrient uptake and grazing defense, and other factors, such as salinity and allelopathy, may also be important to its global expansion. This review comprehensively focuses on the adaptation of C. raciborskii to different environmental factors and try to elucidate the ecophysiological strategies favoring its spreading and invasion.

Cylindrospermopsis raciborskii; distribution; ecophysiology; invasion

10.16258/j.cnki.1674-5906.2017.03.024

Q949.22; X173

A

1674-5906(2017)03-0531-07

雷腊梅, 雷敏婷, 赵莉, 阮紫曦, 于婷, 彭亮, 韩博平. 2017. 入侵蓝藻——拟柱胞藻的分布特征及生理生态研究进展[J]. 生态环境学报, 26(3): 531-537.

LEI Lamei, LEI Minting, ZHAO Li, RUAN Zixi, YU Ting, PENG Liang, HAN Boping. 2017. Review of the distribution and ecophysiology of an invasive cyanobacterial species, Cylindrospermopsis raciborskii [J]. Ecology and Environmental Sciences, 26(3): 531-537.

广东省水利科技创新项目(2016-29);广东省科技计划项目(2013B091300015)

雷腊梅(1973年生),女,副研究员,博士,研究方向为藻类环境生物学。E-mail: tleilam@jnu.edu.cn

*通信作者

2016-12-19

猜你喜欢
水华蓝藻水体
农村黑臭水体治理和污水处理浅探
TiO2基光催化剂在降解水体污染物中的研究进展
藻类水华控制技术及应用
生态修复理念在河道水体治理中的应用
南美白对虾养殖池塘蓝藻水华处理举措
南美白对虾养殖池塘蓝藻水华处理举措
针对八月高温蓝藻爆发的有效处理方案
广元:治理黑臭水体 再还水清岸美
可怕的蓝藻
油酸酰胺去除蓝藻水华的野外围隔原位试验