猪肠道菌群特点和生长的关系

2017-04-05 06:59丁武亿
饲料博览 2017年11期
关键词:B型断奶菌群

陈 鹏,丁武亿

( 1.北京英惠尔生物技术有限公司,北京 100081;2.赣州市畜牧研究所,江西 赣州 341000)

猪肠道菌群特点和生长的关系

陈 鹏1,丁武亿2

( 1.北京英惠尔生物技术有限公司,北京 100081;2.赣州市畜牧研究所,江西 赣州 341000)

猪肠道定植的菌群不仅对猪的整体健康有影响,还对其营养,生产性能和肉质至关重要。许多因素会影响肠道菌群的多样性和活性,包括猪的日龄、生长环境、抗菌剂、日粮组成、添加剂、饲料加工、疾病、断奶、季节、应激和基因。这些因素还能互相作用,让肠道菌群的研究变得困难。肠道菌群的特征是近几年的研究热点领域,尤其是高通量测序方法的使用使得研究越来越深入。文章综述了猪肠道微生物菌群的研究进展,重点阐述了仔猪断奶期肠道菌群的变化,猪生长性能和肠道菌群潜在的关系。

猪;肠道菌群;生长

哺乳动物的肠道菌群对其宿主有很多的贡献,比如其可以对碳水化合物进行消化和发酵,生产维生素,维持肠道绒毛的正常功能,调节免疫应答和预防病原性细菌的侵害[1-6]。最近几年,猪肠道菌群成为了研究热点,畜牧领域的关注度也很高[7-9]。

本文主要就仔猪断奶期肠道菌群的变化,猪生长性能和肠道菌群潜在的关系作以综述,为完善猪日粮配方,减少抗生素的使用,平衡肠道菌落和提高猪肠道健康提供参考。

1 断奶期肠道菌落的变化

仔猪出生时,肠道菌群开始定植,主要通过采食母奶塑造菌群结构,形成母乳导向型菌群型,因为母奶中的多糖不能被仔猪利用,只能被特定微生物利用,从而促进了某些菌群生长,比如乳酸菌群成长的营养物质优势[6]。在哺乳阶段,窝仔猪和母猪一起让仔猪粪便的菌群继续分化,如果存在寄养母猪哺乳,那么肠道菌群的发育会受到显著的影响。因此,哺乳阶段是仔猪肠道菌群进行修饰的一个特有窗口期[10-12]。

仔猪出生时接触到的各种各样的微生物主要来源于母猪肠道和周围的环境,肠道菌群开始建立。另外,新生仔猪在断奶前不断和母猪粪便,皮肤和黏膜上皮接触。猪肠道菌群的建立和分化是和日龄相关。

哺乳仔猪的菌群主要是Bacteroides,Oscilli⁃bacter,Escherichia/Shigella,Lactobacillus和未分类的Ruminococcaceae属,这和断奶后仔猪肠道菌群构成相反,主要是Acetivibrio,Dialister,Oribacteri⁃um,Succinivibrio和Prevotella属。Lactobacillus fermen⁃tum可能由母乳或者粪便垂直传播。仔猪断奶后肠道菌群和其宿主共同进化成两种不同的群,主要由未被分类的Ruminococcaceae和Prevotella区别。Pre⁃votella和腔分泌IgA水平与体重正相关[13-16]。

尽管现代日粮配方更重视氨基酸平衡,但是断奶时,仔猪要采食含有谷物和相对高比例的蛋白质日粮。另外,给哺乳仔猪设计的开口料应以减少断奶时食物环境的突然变化为目的。在断奶过渡期很多研究表明,Lactobacillus菌群数量下降,菌群多样性减少,而Clostridium spp,Prevotella spp或者兼性厌氧菌Proteobacteriaceae,包括E.coli增多。蛋白质或者纤维原料的来源和添加水平塑造了断奶仔猪肠道菌群的多样性和结构[17-18]。比如,角质含量高的豆粕日粮可以减低Lactobacillus的相对丰度,增加结肠中Prevotella的丰度,鱼粉源饲料增加了Escherichia/Shigella比例[19]。

在所有被断奶过渡所影响的生理和肠道要素中,肠道菌群紊乱很可能是导致仔猪断奶后腹泻的首要因素之一。因此,仔猪断奶过渡时伴随着的菌群状态的打乱,被称作“失调”。尽管失调在哺乳动物中被定义为肠道菌群的失衡,专性厌氧菌,比如Clostridia和Bacteroidia类显著减少,兼性厌氧菌,比如Enterobacteriaceae相对丰度增加,但是这种现象的特点还没有完全研究清楚。早期肠道菌群生物系统的紊乱和菌群多样性的消失能很大程度地提高消化道疾病发生的风险。尤其像Lactobacillus spp是预防疾病的主要菌群,断奶期间突然的减少会导致疾病风险增加[20-21]。饲料中添加抗生素也可以导致断奶仔猪肠道菌群失衡,抗生素具有广泛的杀菌活性,因此对有害病原菌和有益菌都有杀死或抑制其生长的作用,从而使菌群的多样性进一步降低[22-24]。长期预防性剂量和治疗性使用抗生素能够增加病原性微生物的增殖和引起疾病[25]。Salmonella entericaserovar Typhimurium(S.Typhimurium)和E.coli是影响养猪业的两大主要病原菌。E.coli中,enterotoxigenic E.coli(ETEC)是主要的仔猪断奶后腹泻传染体,每年世界范围50%的仔猪死亡都是由其引起的[25-30]。

2 肠道菌群特点和猪生长性能的关系

猪肠道菌群用门水平分类主要有3种,Firmicutes,Bacteroidetes和Proteobacteria,猪肠道不同位置的菌群不同[1-3]。在门水平上,结肠和盲肠的菌群组成主要是Firmicutes或Bacteroidetes,这两种菌占总检测菌>90%。然而,空肠和回肠菌群的组成完全不同,在空肠中,Firmicutes是最优势菌,占90%以上,其次是Proteobacteria,Cyanobacteria和Actinobacteria。回肠中Firmicutes and Proteobacteria是主要的优势菌,然后是Proteobacteria,Cyanobac⁃teria和Actinobacteria。在回肠中Firmicutes和Proteo⁃bacteria是主要的优势菌,Proteobacteria占比在5%~40%之间。肠道的取样位置对猪肠道菌群的组成和结构有较大的影响。技术误差,尤其是测序16S rRNA基因超变量的位置,也显著影响猪肠道菌群的组成。尽管存有这些差异,但也发现大量相同点,所有收集的粪便样品中有99%含有Prevotella,Clostridium,Alloprevotella 和 Ruminococcus。另外,90%的肠道样品中含有Clostridium,Blautia,Lacto⁃bacillus,Prevotella,Ruminococcus,Roseburia 和 Sub⁃doligranulum[31-40]。

猪肠道菌群是一个非常复杂的生理系统,在肠道中随着时间呈现动态的结构和多样性[14]。肠道菌群的差异性能够解释猪体重的变异,例如,在门水平上,Firmicutes和Planctomycetes在体重大的猪肠道的相对丰度更大,而Bacteroidetes在体重小的猪上更丰富[9]。同时在种水平上,也发现了体重和菌群的相关性。Prevotella和体重成正相关[10]。肠道菌群组成在瘦和肥胖猪之间也有差异,肥胖猪肠道Firmicutes增加[6]。另外,体重大和生长速度快的猪肠道菌群多样性更高[1,9]。猪对饲料的利用效率和和肠道菌群也存在关系,饲料利用效率高的猪的盲肠的Lactobacillus更丰富。饲料效率高的猪盲肠中总挥发性脂肪酸和结肠中丁酸的水平也更高,也可由菌群组成和功能的差异解释[11]。研究表明,在饲料中长期低剂量添加抗生素,菌型分析发现,猪中Proteo-bacteria(1%~11%)的丰度增加,宏基因组分析表明,和能量生产转化的菌落功能基因增加[22]。有差别的菌不是很常见,抗生素增加了Deino⁃coccus-Thermus phylum丰度,其和抵抗环境应激有关,仅在人类肠道中发现;另外,Ruminococcus spp是反刍动物和猪消化道常见的菌,使用抗生素后使其丰度增加可能提高猪的饲料转化率。

Ramayo等首次从整体的角度研究猪肠道菌群,发现菌群生态系统和猪生长性状有关联,并预见未来猪肠道菌型概念可能对畜牧生产业发挥重要作用[1]。仔猪肠道样本可以分为两种菌型,分别是优势菌Ruminococcus和Treponema,视为PEA型,或者是优势菌Prevotella和Mitsuokella,视为PEB型。菌型对断奶仔猪的体重和日增重的影响显著,与PEA型猪相比,PEB型猪的体重和日增重分别提高了850和17.9 g。结果表明,断奶后仔猪生长速度的差异部分是由肠道菌群生态系统差异驱动的。PEA型主要参与丁酸、氮和氨基酸(例如丙氨酸、天冬氨酸或谷氨酸)代谢。PEB型主要参与碳水化合物代谢。因此,PEB型仔猪可能更适应含有植物性多糖生长猪的日粮,因为由Prevotella产生了大量的短链挥发性脂肪酸,解释了与PEA型猪相比,其体重和日增重更大。另外,PEB型猪的碳水化合物活性酶的活性显著性高。这些都表明PEB型猪有更强的消化含有谷物的常规日粮的能力。在猪整个生命周期中和饲料效率相关的肠道菌群组成,主要是在育肥期肠道菌群和饲料效率有可能相关联[13]。具体表现为有益菌群,比如Clostridiale⁃sand Bacteroidetes的丰度越高,有害菌群比如Rho⁃dococcusand Erysipelotrichaceae的丰度越低,其猪的饲料效率越高。但是,很多和饲料效率相关的菌群组成差异相对不明显,出现在相对丰度小的分类群上。

揭示饲料效率高的猪肠道菌群特点有助于定义提高饲料效率的最佳肠道菌群构成。菌群结构的变化和饲料效率相关联,表明通过修饰肠道菌群的组成可以改善饲料效率的可能性。尤其是猪肠道菌群内部已被证明具有有益功能的特定细菌,可以作为确定未来有可能的饲料效率指标的生物学标记。优化肠道菌群,还可能通过使用这些特定细菌的同类型菌群作为益生菌,或者选择通过使用益生元和其他日粮添加剂,还可以通过粪便肠道转移增加其丰度[4-6]。

3 小结

未来对肠道菌群研究很重要的一个方面就是要弄清楚菌群的组成是如何对动物的健康和生长起到贡献作用。目前的研究数据主要是描述性的,没有准确回答菌群组成对动物生理变化的本质原因。尽管已经证明菌群的组成对代谢有重要作用,但是究竟是哪一类菌还需要进一步定义。另外,同一种代谢功能是否由不同类的但是刚好有类似的代谢活动的菌所提供这一问题也需要进一步研究。描述肠道菌群是理解其对宿主发挥何种功能的第一步,因此,未来研究工作应该集中在功能性分析上。

[1] Ramayo-Caldas Y,Mach N,Lepage P,et al.Phylogenetic network analysis applied to pig gut microbiota identifies an ecosystem structure linked with growth traits[J].Isme Journal,2016,10(12):2 973-2 977.

[2] Liang X,Estellé J,Kiilerich P,et al.A reference gene catalogue of the pig gut microbiome[J].Nature Microbiology,2016,1:16 161.

[3] Kim H B,Isaacson R E.The pig gut microbial diversity:understanding the pig gut microbial ecology through the next generation high throughput sequencing[J].Veterinary Microbiology,2015,177(3/4):242-251.

[4] Prieto M L,O'Sullivan L,Tan S P,et al.Evaluation of the efficacy and safety of a marine-derived Bacillus strain for use as an in-feed probiotic for newly weaned pigs[J].Plos One,2014,9(2):88 599.

[5] de Vos W M.Fame and future of faecal transplantationsdeveloping next-generation therapies with synthetic microbi⁃omes[J].Microbial Biotechnology,2013,6(4):316-325.

[6] Pedersen R,Andersen A D,Mølbak L,et al.Changes in the gut microbiota of cloned and non-cloned control pigs during development of obesity:gut microbiota during development of obesity in cloned pigs[J].Bmc Microbiology,2013,13(1):30.

[7] Frese S A,Parker K,Calvert C C,et al.Diet shapes the gut microbiome of pigs during nursing and weaning[J].Microbiome,2015,3(1):28.

[8] Metzlerzebeli B U,Schmitzesser S,Mann E,et al.Adaptation of the cecal bacterial microbiome of growing pigs in response to resistant starch type 4[J].Applied&Environmental Microbiology,2015,81(24):8 489-8 499.

[9] Han G G,Lee J Y,Jin G D,et al.Evaluating the association between body weight and the intestinal microbiota of weaned pig⁃lets via 16S rRNA sequencing[J].Applied Microbiology&Bio⁃technology,2016,196:55-62.

[10] Mach N,Berri M,Estellé J,et al.Early-life establishment of the swine gut microbiome and impact on host phenotypes[J].En⁃vironmental Microbiology Reports,2015,7(3):554-569.

[11] Vigors S,Sweeney T,O'Shea C J,et al.Pigs that are divergent in feed efficiency,differ in intestinal enzyme and nutrient trans⁃porter gene expression,nutrient digestibility and microbial activity[J].Animal,2016,10(11):1 848-1 855.

[12] Buffie C G,Pamer E G.Microbiota-mediated colonization resistance against intestinal pathogens[J].Nature Reviews Immunology,2013,13(11):790-801.

[13] Kamada N,Seo S U,Chen G Y,et al.Role of the gut microbiota in immunity and inflammatory disease[J].Nature Reviews Im⁃munology,2013,13(5):321-335.

[14] Isaacson R,Kim H B.The intestinal microbiome of the pig[J].Animal Health Research Reviews,2012,13(1):100-109.

[15] Petri D,Hill J E,Kessel A G V.Microbial succession in the gastrointestinal tract(GIT)of the preweaned pig[J].Livestock Science,2010,133(1):107-109.

[16] Bian G,Ma S,Zhu Z,et al.Age,introduction of solid feed and weaning are more important determinants of gut bacterial succession in piglets than breed and nursing mother as revealed by a reciprocal cross-fostering model[J].Environmental Microbiology,2016,18(5):1 566-1 577.

[17] Rist V T,Weiss E,Eklund M,et al.Impact of dietary protein on microbiota composition and activity in the gastrointestinal tract of piglets in relation to gut health:a review[J].Animal An International Journal of Animal Bioscience,2013,7(7):1 067-1 078.

[18] Pieper R,Vahjen W,Zentek J.Dietary fibre and crude protein:impact on gastrointestinal microbial fermentation characteristics and host response[J].Animal Production Science,2015,55(12):1 367-1 375.

[19] Cao K,Zhang H,Han H,et al.Effect of dietary protein sources on the small intestine microbiome of weaned piglets based on highthroughput sequencing[J].Letters in Applied Microbiology,2016,62(5):392-398.

[20] Xin T,Xu Z,Jing W.Intestinal microbiota diversity and expression of pattern recognition receptors in newly weaned piglets[J].Anaerobe,2015,32:51-56.

[21] Konstantinov S R,Awati A A,Williams B A,et al.Post-natal development of the porcine microbiota composition and activities[M].UCL Press,2006:1 191-1 199.

[22] Looft T,Johnson T A,Allen H K,et al.In-feed antibiotic effects on the swine intestinal microbiome[J].Proceedings of the National Academy of Sciences of the United States of America,2012,109(5):1 691-1 696.

[23] Levesque C L,Hooda S,Swanson K S,et al.Alterations in ileal mucosa bacteria related to diet complexity and growth perfor⁃mance in young pigs[J].Plos One,2014,9(9):108 472.

[24] Zhang D,Ji H,Liu H,et al.Changes in the diversity and com⁃position of gut microbiota of weaned piglets after oral administration of Lactobacillus,or an antibiotic[J].Applied Microbiology&Biotechnology,2016,100(23):10 081-10 093.

[25] Schokker D,Zhang J,Zhang L L,et al.Early-life environmental variation affects intestinal microbiota and immune development in new-born piglets[J].Plos One,2014,9(6):100 040.

[26] Lallès J P,Bosi P,Smidt H,et al.Nutritional management of gut health in pigs around weaning[J].Proc Nutr Soc,2007,66(2):260-268.

[27] Winter S E,Winter M G,Xavier M N,et al.Host-derived nitrate boosts growth of E.coli in the inflamed gut,2013,339(6 120):708-711.

[28] Mach N,Berri M,Estellé J,et al.Early-life establishment of the swine gut microbiome and impact on host phenotypes[J].En⁃vironmental Microbiology Reports,2015,7(3):554-559.

[29] Katouli M,Lund A,Wallgren P,et al.Metabolic fingerprinting and fermentative capacity of the intestinal flora of pigs during pre- and post-weaning periods[J].Journal of Applied Microbiology,1997,83(2):147.

[30] Thompson C L,Wang B,Holmes A J.The immediate environment during postnatal development has long-term impact on gut community structure in pigs[J].Isme Journal,2008,2(7):739-748.

[31] Inoue R,Tsukahara T,Nakanishi N,et al.Development of the intestinal microbiota in the piglet[J].Journal of General& Applied Microbiology,2005,51(4):257-265.

[32] Kim H B,Borewicz K,White B A,et al.Longitudinal investigation of the age-related bacterial diversity in the feces of commercial pigs[J].Veterinary Microbiology,2011,153(1/2):124-133.

[33] Schmidt B,Mulder I E,Musk C C,et al.Establishment of normal gut microbiota is compromised under excessive hygiene conditions[J].Plos One,2011,6(12):28 284.

[34] Buzoianu S G,Walsh M C,Rea M C,et al.High-throughput sequence-based analysis of the intestinal microbiota of weanling pigs fed genetically modified MON810 maize expressing Bacillus thuringiensis Cry1Ab(Bt maize)for 31 days[J].Applied&Environmental Microbiology,2012,78(12):4 217-4 224.

[35] Bearson S,Allen H K,Bearson B L,et al.Profiling the gastrointestinal microbiota in response to Salmonella:low versus high Salmonella,shedding in the natural porcine host[J].Infection Genetics&Evolution,2013,16(2):330-340.

[36] Mann E,Schmitzesser S,Zebeli Q,et al.Mucosa-associated bacterial microbiome of the gastrointestinal tract of weaned pigs and dy⁃namics linked to dietary calcium-phosphorus[J].2014,9(1):86 950.

[37] Schokker D,Zhang J,Zhang L L,et al.Early-life environmental variation affects intestinal microbiota and immune development in new-born piglets[J].Plos One,2014,9(6):100 040.

[38] Bik E M,Eckburg P B,Gill S R,et al.Molecular analysis of the bacterial microbiota in the human stomach[J].Proceedings of the National Academy of Sciences of the United States of America,2006,103(3):732-737.

[39] Rincon M T,Cepeljnik T,Martin J C,et al.A novel cell surfaceanchored cellulose-binding protein encoded by the sca gene cluster of Ruminococcus flavefaciens[J].Journal of Bacteriology,2007,189(13):4 774-4 783.

[40] Holman D B,Brunelle B W,Trachsel J,et al.Meta-analysis to define a core microbiota in the swine gut[J].Msystems,2017,2(3):4-17.

Relationship between Intestinal Microflora Characteristics and Pig Growth

CHEN Peng1,DING Wuyi2

(1.Beijing Enhalor Biotechnology Co.,Ltd.,Beijing 100081,China;2.Ganzhou Institute of Animal Husbandry,Ganzhou 341000,Jiangxi China)

Colonization of the GIT by the microbiota plays an critical role not only for the overall well-being of the pig,but also for its nutrition,performance and quality of the products produced.Myriad of factors influences the diversity and activity of the GIT microbiota,including the age of the pig,the environment inhabiting,antimicrobial agents,dietary composition,feed additives,feed processing,disease load,weaning,season,stress and genes.These factors,can interact to make the study of the gut microbiota difficult.The characterization of the gut microbiota of swine has become an active area of research in recent years,especially as the adaptation of high-throughput sequencing methods have continued to expand.This article described the progress of intestinal microflora research and dis⁃cussed the changes of intestinal microflora,the relationship between growth performance and intestinal microflora of piglets during weaning period.

swine;gut microbia;growth

S828;S852.6

A

1001-0084(2017)11-0001-04

2017-09-23

陈鹏(1983-),男,黑龙江哈尔滨人,博士,主要从事生物饲料和添加剂的研究。

猜你喜欢
B型断奶菌群
仔猪断奶后消瘦应采取哪些措施增肥
“云雀”还是“猫头鹰”可能取决于肠道菌群
提高仔猪断奶窝重的方法
“水土不服”和肠道菌群
仔猪断奶前阉割好处多
基于B型超声的在线手势识别
高锌在断奶仔猪日粮上的应用研究进展
肉牛剩余采食量与瘤胃微生物菌群关系
咽部菌群在呼吸道感染治疗中的临床应用
PSS4B型电力系统稳定器参数整定