徐俏宇,孙宏亮,徐妍妍,王武
磁共振小视野弥散加权成像技术在影像诊断中的研究进展
徐俏宇,孙宏亮,徐妍妍,王武*
磁共振弥散加权成像作为一种功能成像已经成为常规磁共振成像诊断中的重要组成部分。然而在目前的临床应用中较为广泛使用的全视野弥散加权成像技术,其图像质量较差,解剖结构分辨率较低,容易产生比较严重的伪影,图像的变形和失真等问题。随着技术的进展,小视野弥散加权成像技术通过在相位编码方向上缩减视野大小等方法显著提高了图像质量及组织结构分辨能力,减轻图像伪影、变形、失真等情况,这对于体积较小、结构精细、解剖部位附近磁化率变化较大或易受不自主生理性运动影响的器官及部位尤为重要。作者对小视野弥散加权成像的成像原理及其在各器官中的研究进展进行综述。
弥散磁共振成像;视野;诊断,鉴别
在影像诊断中,MRI常规T2序列具有良好的空间分辨率,但在检出小的低级别肿瘤时易出现假阴性,在对肿瘤与出血或炎症进行鉴别,以及评价其治疗反应等方面时准确率欠佳[1]。弥散加权成像(diffusion-weighted imaging,DWI)可以在无需对比剂的情况下检测活体组织内水分子的弥散变化以及弥散受限的程度,量化肿瘤的病理学特征及生物学行为[2-3]。所以将T2加权与DWI的功能信息相结合,能更准确地定位病变,评估病变性质、治疗效果以及预后[4]。然而在临床中最常用的DWI序列仍是以单次激发平面回波成像(singleshot echo-planar imaging,ssEPI)为基础,该成像方式存在易出现伪影、失真、空间分辨率有限等缺陷,影响病变检出的准确率。随着技术的进步,小视野弥散加权成像(reduced field of view diffusion weighted imaging,rFOV-DWI)可以获得更优越的图像质量、提高组织结构分辨能力、显著减少伪影和图像失真[5]。笔者对rFOV-DWI的成像原理及其在各器官中的研究进展进行综述。
在全视野弥散加权成像(full field of view diffusion weighted imaging,fFOV-DWI)中,因其视野较大常同时覆盖液体、气体、软组织、骨骼等磁敏感程度不同的物质,临床中越来越多地使用更高的3.0 T场强来获得较高的信噪比等,使得B0场的不均一性带来的问题更为突出[6-7]。再加上ssEPI本身回波链很长,容易累积相位误差,而且相位方向上带宽较小,易导致图像的变形。长回波链本身也会导致T2*衰减,进而导致图像的模糊和信号的损失。一般为了控制图像变形程度,ssEPI的图像空间分辨率比较低,而且如果增大矩阵则增加回波链长度加剧图像变形和模糊,故常规序列中通过增大矩阵来提升分辨率的方法不适用于ssEPI[8]。
rFOV-DWI使用了2D空间选择性射频脉冲(two-dimensional spatially selective radiofrequency pulses,2D RF)和180°回聚脉冲技术。这与常规序列的激发脉冲仅在目标层面方向上选择性激发一个指定厚度平面内的组织不同,2DRF是由两个在正交方向上独立控制厚度的射频脉冲组成,分别为层面选择方向和相位编码方向。在这两个方向上同时选择性激发特定厚度的组织,从而缩小相位方向上的FOV,减少相位编码步数,缩短EPI回波链长度及回波时间,而且2D RF拥有整合B1场强信息后单独调整每个RF脉冲的相位和振幅使其达到更加均一的反转角度的优势,这样就可以达到个体或容积特异性的修正B1场的目的,因此其图像几何变形程度减少、磁敏感伪影减低、空间分辨率提高又不增加扫描时间[5,9-11]。此外,在2DRF的层面选择方向上使用180°重聚脉冲缩减带宽,进而达到抑制除周期性2D激发脉冲之外的所有信号的作用。其中EPI序列的脂肪抑制尤为重要,否则将会导致严重的伪影,而2DRF与180°重聚脉冲的的结合可以在充分抑制脂肪的同时激发水信号,消除了化学位移的影响,从而有助于微小病灶的检出[12]。2D平面回波射频脉冲还具有不激发邻近层面的优势,这使得连续多层面扫描得以实现[11]。与其他可以提升DWI清晰程度及减少图像形变程度的多激发技术相比,rFOV-DWI不需要明显增加扫描时间,且不需要复杂耗时的重建技术[13]。
脊髓的横断面较小,骨组织及脑脊液边缘磁化率变化较大[14-15],尤其对于低位脊髓来说,其体积更小,更易受生理性不自主运动和部分容积效应的影响[16-17],这即使在目前较为先进的方法弥散张量成像中,检出轴突和髓鞘的疾病时都不十分稳定[18-19]。rFOV-DWI可以有效减少图像失真及伪影,并进一步观察神经系统的微观结构变化,这对于具有膀胱及性功能障碍等症状的神经系统疾病的诊断是有帮助的,例如多发性硬化,脊髓损伤,多系统萎缩等[20]。此外,超高b值小视野弥散加权成像(ultrahigh-b radial DWI,UHB-rDWI)可以增加白质和灰质的对比度,提高分辨率和信噪比,非线性静态磁场不均匀性导致的图像失真显著减少[15]。尤其当b>5000 s/mm2时,UHB-rDWI可以在总信号强度保持不变的同时使轴突之外的信号几乎完全消失,从而更好地评估白质病变。在急性脊髓缺血损伤的病人中,初发数小时内可以进行溶栓治疗,因此早期诊断尤为重要,DWI (数小时)可早于T2序列(1~2 d)识别梗死[20],rFOV-DWI能在缩短扫描时间的同时得到高分辨图像,这对更精确地呈现图像细节和判断具体血供损伤区域有所帮助[14]。
前列腺在体内位置较深,作为肿瘤好发部位的前列腺外周区毗邻含有气体的直肠,FOV内严重的磁敏感不均一及运动伪影导致较为严重的图像失真和伪影[21]。因此能在小范围内集中激发的rFOV-DWI优势明显,包括图像质量显著提高,伪影、模糊、变形的程度下降,解剖结构分辨更为清晰(前列腺包膜、外周区、移行区、尿道周围区),有利于小病灶的检出和更为精准的T分期[5,10,21-22]。另一方面前列腺本身及病变的体积均较小,DWI序列与T2序列对齐比较时(对齐精度)存在失真和角误差,单个平面中病变的平均直径仅1.3~1.4 cm[22],因此其精度对于前列腺影像图像解读尤为重要[10,22-23]。rFOV-DWI可以提高前列腺腺体本身(DWI图像超出T2图像中前列腺轮廓外的程度)以及前列腺病变(包括偏离病变中心的程度和超出病变外缘的程度)的对齐精度[10,22]。有研究表明其在矢状面上超出病变外缘的程度从0.5 cm下降到0.3 cm,在冠状面上从0.4 cm下降到0.2 cm[22],因而在MRI引导下前列腺肿瘤活检和放射治疗计划制订时,病灶的定位和勾画更加精确;rFOV-DWI拥有更高的真阳性率,病变检出的敏感性从0.59提升到0.66;ROC曲线下的面积(area under the curve,AUC)增加,因而拥有更优的诊断价值。虽然目前研究表明两个序列表观弥散系数(apparent diffusion coefficient,ADC)数值结果没有显著的统计学差异[10,22],但rFOV-DWI ADC图失真变形程度下降,特别在前列腺包膜、尿道周围区图像质量明显提高[5]。
膀胱肿瘤因治疗方式不同,区分非浸润性(T1期及以下)和浸润性膀胱癌(T2期及以上)尤为重要。rFOV-DWI显著提高膀胱图像质量,减轻伪影和几何变形,因而T分期更为精准,尤其对于T2分期以上的肿瘤,T2序列与rFOV-DWI联合使用的诊断准确率、特异性、AUC都显著高于单独使用T2序列或联合使用fFOV-DWI序列[24]。有研究报道单独使用T2序列,T2联合fFOV-DWI、T2联合rFOV-DWI的诊断正确率分别为57%、70%、78%;AUC分别为0.781,0.771,0.826[24]。对于ADC值而言,膀胱肿瘤显著低于正常组织[25],恶性肿瘤显著低于良性肿瘤[26]及正常组织[27],肌层浸润性膀胱癌显著低于非肌层浸润性膀胱癌[24],G3分级以上的膀胱肿瘤显著低于G1分级的膀胱肿瘤[24,26,28]。特别是在肌层浸润性膀胱癌当中rFOV-DWI表现为更低的ADC值,更为接近真实弥散状态[24,26]。虽然rFOV-DWI诊断肌层浸润特异性提高,但敏感性低于T2序列,(从92%下降到75%),因此更为推荐联合使用提高诊断效能[24]。
rFOV-DWI应用于乳腺扫描时,图像质量显著提高,分辨率和信噪比增加,伪影和失真显著下降,脂肪抑制效果更佳,乳腺肿瘤的形态和病变细节显示更清晰。在乳腺恶性肿瘤中,rFOVDWI和标准双侧DWI的ADC值都显著低于其他的病变,特别是在ADC值本身较低的区域中[29]。甚至有部分研究者认为rFOV-DWI得到了更低的ADC值,在基于BI-RADS评分预测乳腺肿瘤的AUC中, rFOV-DWI高于标准双侧DWI,依次分别为0.71~0.93、0.61~0.76;通过病变形态评估其良恶性时,rFOV-DWI可达到与动态增强核磁(dynamic contrast enhanced MRI,DCE-MRI)相似的效果(rFOV-DWI AUC:0.74-0.91;标准双侧DWI AUC:0.67~0.70,DCE AUC:0.76~0.83)[30],且因其无需注射造影剂并缩短扫描时间,更利于临床中用于随访那些未进行活检或手术的乳腺病变(例如DCE-MRI评估为BI-RADS 3级的病例[31]),也可以用于评估新辅助化疗后病变的病理组织学改变[30]和体积改变[32]。此外,Kang等[33]报道“病变边缘高信号”可以作为一种很有价值的形态特征评估良恶性,其提高了DWI序列诊断的特异性,rFOV-DWI则提高了对这一特征的识别(特异性80.6%)[30]。
头颈部解剖结构精细且复杂,fFOV内常同时存在水,骨骼,空气等磁化率不同的组织。DWI在肿瘤诊断中扮演着重要的角色,例如在原发腮腺肿瘤中,DWI比形态学MRI和动态增强能更好地诊断其病理类型[34]。rFOV-DWI可以显著提高图像质量,尤其对于体积小的病变或位于易受磁化效应影像区域的肿瘤,如好发鳞状细胞癌的舌和上颚[35],rFOV-DWI能够显示更多的解剖细节,更准确地界定肿瘤病变范围,诊断的准确性更高[34-36]。有研究报道rFOV-DWI测得的ADC值小于fFOV-DWI,可重复性更好,其数值更趋于可靠,这在区别唾液腺肿瘤和涎腺瘤(ADC值>1.4×10-3mm2/s)[34]、恶性和良性肿瘤(乳头状囊腺瘤)[37]、鳞状细胞癌(平均ADC值=0.93×10-3mm2/s)和淋巴瘤(平均ADC值=0.64×10-3mm2/s)[38]以及甲状腺病变[39]中尤为重要,帮助临床选择更合适治疗手段;此外rFOV-ADC值的标准差减小提供了更可靠的一致性[34]。
胰腺属于位置较深的腹膜后位器官,早期胰腺肿瘤没有明显的临床症状,DWI序列可以为常规MRI序列检出病灶提供有效的补充。然而常规DWI序列会在胰腺邻近胃肠道(含气体),腹部器官和主动脉运动的影响下产生磁敏感性伪影、重影、且空间分辨率较低。胰腺rFOV-DWI集中激发单个器官,提供了更清晰的解剖结构,病灶更为明显,图像质量更佳,有文献报道其空间分辨率大约为fFOV的2倍[40-41],更容易发现微小病变。虽然两者的ADC值相似[40-42],但rFOV-DWI所获得的ADC值可重复性更好,对于早期胰腺癌或信号强度与正常胰腺组织类似的病变来说,DWI是一种非常有意义的检查方法,即使病变清晰度有轻微的提高和ADC值有轻度的变化,rFOV-DWI亦可检测出来。有研究报道胰腺癌(rFOV ADC 1.061×10-3mm2/s±0.133,fFOV ADC1.079×10-3mm2/s±0.135)和胰腺神经内分泌肿瘤(rFOV ADC 0.983×10-3mm2/s±0.152,fFOV ADC 1.191×10-3mm2/s±0.153)的ADC值显著地低于胰腺实质(rFOV ADC 1.191×10-3mm2/s± 0.152,fFOV ADC 1.218×10-3mm2/s±0.103),所以rFOVDWI ADC值拥有更好的区分病变组织和正常组织的潜力[41]。
对于肾脏疾病来说,rFOV-DWI整体图像质量显著提高,减少图像的模糊和变形,更清晰地显示肾脏边界、皮髓质以及小病变,提高诊断的可信度[43]。有研究认为ADC值可以用于区分肾脏嗜酸细胞瘤和肾细胞癌,从而避免不必要的肾脏切除术[44]。虽然对于肾实质或肾脏病变来说,小视野与大视野DWI的ADC值相似,但rFOV- DWI可以在更短的扫描时间内达到同样的效果,而且测量可重复性更好[44]。
目前,该技术在其他器官及组织中的相关研究鲜有报道,这可能由于其应用重点为体积较小、结构较为精细、解剖部位邻近磁化率变化较大或易产生不自主生理性运动的器官及部位周围,以及需要较高分辨率来判定病变性质和范围的器官或组织。rFOV-DWI仍然存在一定的问题有待解决,例如因其视野较小,视野外的病变或转移易被忽略;在制订扫描计划时,常无法直接通过定位像确定病变的具体位置,需要在常规相应的大视野序列的基础上进行定位,因此临床中仍需联合应用其他扫描序列进行补充,即大视野用来覆盖全部组织,小视野用于集中扫描病变的部位,提高病变局部细节和侵袭情况判断的准确性;即使在3.0 T场强中,rFOV-DWI的平面空间分辨率及信噪比仍相对较低,需进一步改善。此外,目前各部位有关于rFOV-DWI的研究病例数普遍较少,需要更大规模的临床实验证明其应用前景;目前的研究主要着重于良恶性肿瘤的对比,缺乏不同病理类型之间、良性肿瘤之间、非肿瘤性疾病之间及转移淋巴结相关的研究,进一步明确其应用价值。在ADC值方面,目前由于不同序列之间技术本身的差别,缺乏统一的评价标准,只能从理论上预估其优越性,而不能很好地从统计数据中体现,因此有待于找到合理的比对方式,并设置统一的标准提高其临床应用价值。
[References]
[1] Wu LM, Xu JR, Ye YQ, et al. The clinical value of diffusionweighted imaging in combination with T2-weighted imaging in diagnosing prostate carcinoma: a systematic review and metaanalysis. AJR Am J Roentgenol, 2012, 199(1): 103-110.
[2] Reeder SB, Mukherjee P. Clinical applications of MR diffusion and perfusion imaging: Preface. Magn Reson Imaging Clin N Am, 2009,17(2): 11-12.
[3] Chilla GS, Tan CH, Xu C, et al. Diffusion weighted magnetic resonance imaging and its recent trend-a survey. Quant Imaging Med Surg, 2015, 5(3): 407-422.
[4] Haider MA, van der Kwast TH, Tanguay J, et al. Combined T2-weighted and diffusion-weighted MRI for localization of prostate cancer. AJR Am J Roentgenol, 2007, 189(2): 323-328.
[5] Rosenkrantz AB, Chandarana H, Pfeuffer J, et al. Zoomed echoplanar imaging using parallel transmission: impact on image quality of diffusion-weighted imaging of the prostate at 3 T. Abdominal Imaging, 2015, 40(1): 120-126.
[6] Lee VS, Hecht EM, Taouli B, et al. Body and cardiovascular MR imaging at 3.0 T. Radiology, 2007, 244(3): 692-705.
[7] Akisik FM, Sandrasegaran K, Aisen AM, et al. Abdominal MR imaging at 3.0 T. Radiographics, 2007, 27(5): 1433-1444.
[8] Morelli J, Porter D, Ai F, et al. Clinical evaluation of single-shot and readout-segmented diffusion-weighted imaging in stroke patients at 3 T. Acta Radiologica, 2013, 54(3): 299-306.
[9] Mürtz P, Kaschner M, Träber F, et al. Evaluation of dual-source parallel RF excitation for diffusion-weighted whole-body MR imaging with background body signal suppression at 3.0 T. Eur J Radiol, 2012, 81(11): 3614-3623.
[10] Thierfelder KM, Scherr MK, Notohamiprodjo M, et al. Diffusion-weighted MRI of the prostate: advantages of zoomed EPI with parallel-transmit-accelerated 2D-selective excitation imaging. Eur Radiol, 2014, 24(12): 3233-3241.
[11] Saritas EU, Cunningham CH, Lee JH, et al. DWI of the spinal cord with reduced FOV single-shot EPI. Magn Reson Med, 2008, 60(2):468-473.
[12] Dong H, Li Y, Li H, et al. Study of the reduced field-of-view diffusion-weighted imaging of the breast. Clin Breast Cancer, 2014,14(4): 265-271.
[13] Banerjee S, Nishimura DG, Shankaranarayanan A, et al. Reduced field-of-view DWI with robust fat suppression and unrestricted slice coverage using tilted 2DRF excitation. Magn Reson Med, 2016,76(6): 1668-1676.
[14] Seeger A, Klose U, Bischof F, et al. Zoomed EPI DWI of acute spinal ischemia using a parallel transmission system. Clin Neuroradiol,2016, 26(2): 177-182.
[15] Sapkota N, Shi X, Shah LM, et al. Two-dimensional single-shot diffusion-weighted stimulated EPI with reduced FOV for ultrahigh-b radial diffusion-weighted imaging of spinal cord. Magn Reson Med,2016. [Epub ahead of print]
[16] Wheeler-Kingshott CA, Stroman PW, Schwab JM, et al. The current state-of-the-art of spinal cord imaging: applications. Neuroimage,2014, 84: 1082-1093.
[17] Stroman PW, Wheeler-Kingshott C, Bacon M, et al. The current state-of-the-art of spinal cord imaging: methods. Neuroimage, 2014,84:1070-1081.
[18] Zollinger LV, Kim TH, Hill K, et al. Using diffusion tensor imaging and immunofluorescent assay to evaluate the pathology of multiple sclerosis. J Magn Reson Imaging, 2011, 33(3): 557-564.
[19] Facon D, Ozanne A, Fillard P, et al. MR diffusion tensor imaging and fiber tracking in spinal cord compression. AJNR Am J Neuroradiol,2005, 26(6): 1587-1594.
[20] Yiannakas MC, Grussu F, Louka P, et al. Reduced field-of-view diffusion-weighted imaging of the lumbosacral enlargement: a pilot in vivo study of the healthy spinal cord at 3 T. PLoS One, 2016,11(10): e164890.
[21] Attenberger UI, Rathmann N, Sertdemir M, et al. Small field-of-view single-shot EPI-DWI of the prostate: evaluation of spatially-tailored two-dimensional radiofrequency excitation pulses. Z Med Phys,2016, 26(2): 168-176.
[22] Brendle C, Martirosian P, Schwenzer NF, et al. Diffusion-weighted imaging in the assessment of prostate cancer: comparison of zoomed imaging and conventional technique. Eur J Radiol, 2016, 85(5): 893-900.
[23] Turkbey B, Merino MJ, Gallardo EC, et al. Comparison of endorectal coil and nonendorectal coil T2W and diffusion-weighted MRI at 3 tesla for localizing prostate cancer: correlation with whole-mount histopathology. J Magn Reson Imag, 2014, 39(6): 1443-1448.
[24] Wang Y, Li Z, Meng X, et al. Nonmuscle-invasive and muscle-invasive urinary bladder cancer. Medicine (Baltimore), 2016, 95(10): e2951.[25] Matsuki M, Inada Y, Tatsugami F, et al. Diffusion-weighted MR imaging for urinary bladder carcinoma: initial results. Eur Radiol,2007, 17(1): 201-204.
[26] Avcu S, Koseoglu MN, Ceylan K, et al. The value of diffusionweighted MRI in the diagnosis of malignant and benign urinary bladder lesions. Br J Radiol, 2011, 84(1006): 875-882.
[27] El-Assmy A, Abou-El-Ghar ME, Refaie HF, et al. Diffusion-weighted MR imaging in diagnosis of superficial and invasive urinary bladder carcinoma: a preliminary prospective study. Scientific World Journal,2008, 8: 364-370.
[28] Takeuchi M, Sasaki S, Ito M, et al. Urinary bladder cancer: diffusionweighted MR imaging--accuracy for diagnosing T stage and estimating histologic grade. Radiology, 2009, 251(1): 112-121.
[29] Singer L, Wilmes LJ, Saritas, EU et al. High-resolution diffusionweighted magnetic resonance imaging in patients with locally advanced breast cancer. Acad Radiol, 2012, 19(5): 526-534.
[30] Barentsz MW, Taviani V, Chang JM, et al. Assessment of tumor morphology on diffusion-weighted (DWI) breast MRI: diagnostic value of reduced field of view DWI. J Magn Reson Imaging, 2015,42(6): 1656-1665.
[31] Eby PR, DeMartini WB, Gutierrez RL, et al. Characteristics of probably benign breast MRI lesions. AJR Am J Roentgenol, 2009,193(3): 861-867.
[32] Wilmes LJ, McLaughlin RL, Newitt DC, et al. High-resolution diffusion-weighted imaging for monitoring breast cancer treatment response. Acad Radiol, 2013, 20(5): 581-589.
[33] Kang BJ, Lipson JA, Planey KR, et al. Rim sign in breast lesions on diffusion-weighted magnetic resonance imaging: diagnostic accuracy and clinical usefulness. J Magn Reson Imaging, 2015, 41(3): 616-623.
[34] Vidiri A, Minosse S, Piludu F, et al. Feasibility study of reduced field of view diffusion-weighted magnetic resonance imaging in head and neck tumors. Acta Radiologica, Acta Radiol, 2017, 58(3): 292-300.
[35] Riffel P, Michaely HJ, Morelli JN, et al. Zoomed EPI-DWI of the head and neck with two-dimensional, spatially-selective radiofrequency excitation pulses. Eur Radiol, 2014, 24(10): 2507-2512.[36] von Morze C, Kelley DA, Shepherd TM, et al. Reduced field-ofview diffusion-weighted imaging of the brain at 7 T. Magn Reson Imaging, 2010, 28(10): 1541-1545.
[37] Yabuuchi H, Matsuo Y, Kamitani T, et al. Parotid Gland Tumors:Can Addition of diffusion-weighted MR imaging to dynamic contrast-enhanced mr imaging improve diagnostic accuracy in characterization? Radiology, 2008, 249(3): 909.
[38] Zhang Y, Chen J, Shen J, et al. Apparent diffusion coefficient values of necrotic and solid portion of lymph nodes: differential diagnostic value in cervical lymphadenopathy. Clin Radiol, 2013, 68(3): 224-231.
[39] Lu Y, Hatzoglou V, Banerjee S, et al. Repeatability investigation of reduced field-of-view diffusion-weighted magnetic resonance imaging on thyroid glands. J Comput Assist Tomogr, 2015, 39(3):334-339.
[40] Ma C, Li Y, Pan C, et al. High resolution diffusion weighted magnetic resonance imaging of the pancreas using reduced field of view single-shot echo-planar imaging at 3 T. Magn Reson Imaging,2014, 32(2): 125-131.
[41] Kim H, Lee JM, Yoon JH, et al. Reduced field-of-view diffusionweighted magnetic resonance imaging of the pancreas: comparison with conventional single-shot echo-planar imaging. Korean J Radiol,2015, 16(6): 1216-1225.
[42] Riffel P, Michaely HJ, Morelli JN, et al. Zoomed EPI-DWI of the pancreas using two-dimensional spatially-selective radiofrequency excitation pulses. PLoS One, 2014, 9(3): e89468.
[43] He Y, Hausmann D, Morelli JN, et al. Renal zoomed EPI-DWI with spatially-selective radiofrequency excitation pulses in two dimensions. Eur J Radiol, 2016, 85(10): 1773-1777.
[44] Lassel EA, Rao R, Schwenke C, et al. Diffusion-weighted imaging of focal renal lesions: a meta-analysis. Eur Radiol, 2014, 24(1): 241-249.
Research advances in reduced field of view diffusion weighted imaging
XU Qiao-yu, SUN Hong-liang, XU Yan-yan, WANG Wu*
Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, China
Diffusion-weighted imaging (DWI), as a kind of functional imaging technique, is an important complement to the conventional MRI in imaging diagnosis.However, the most common technique is full field of view diffusion weighted imaging(fFOV-DWI), which has some defects that cannot be ignored, such as poor image quality, low resolution of anatomical structure and serious artifact. With development of technology, reduced field of view diffusion weighted imaging (rFOV DWI) avoids the need to encode a large extent in the phase-encode direction, shortens the echo train and reduces off-resonance-induced artifacts in single-shot echo-planar imaging(ssEPI), resulting in significantly improved image quality. This review focuses on the theory and clinical research advances of rFOV DWI in the various organs for imaging diagnosis.
Diffusion magnetic resonance imaging; Visual fields; Diagnosis,differential
国家自然科学基金项目(编号:81501469);国家卫生和计划生育委员会公益性行业科研专项(编号:201402019)
中日友好医院放射科,北京 100029
王武,E-mail:cjr.wangwu@vip.163.com
2017-02-14
接受日期:2017-04-08
R445.2
A
10.12015/issn.1674-8034.2017.07.016
徐俏宇, 孙宏亮, 徐妍妍, 等. 磁共振小视野弥散加权成像技术在影像诊断中的研究进展. 磁共振成像, 2017, 8(7):556-560.*Correspondence to: Wang W, E-mail: cjr.wangwu@vip.163.com
Received 14 Feb 2017, Accepted 8 Apr 2017
ACKNOWLEDGMENTSThe National Natural Science Fund (No. 81501469).Health and family planning commission public welfare industry research (No.201402019).