关于物流配送选址问题的研究

2017-03-14 18:24闫宁宁
科技视界 2016年27期

闫宁宁

【摘 要】随着物流业的快速发展,越来越多的人開始更加重视物流配送中心选址问题的研究。我们可以看到经过十余年的发展,我国无论是在物流选址理论还是物流选址实践方面都取得了不错的成绩。本文将从物流配送中心选址问题的划分、解决选址问题的方法、经典选址的模型三个方面来分析一下物流配送中心选址问题的研究成果。

【关键词】重心法;P-中值模型;覆盖选址模型;反町氏法

1 物流配送中心选址问题的划分

对于物流配送中心选址问题的划分,较经典的划分方法如下:

1.1 按照设施选址的数量划分,可以将选址问题分为单个设施选址和多个设施选址

1.1.1 单个设施选址问题

单个设施选址是指只建立一个配送中心,由一个配送中心来完成整个配送过程。对于单个设施选址模问题,成本是首要考虑的条件。因为只有一个配送中心,所以管理的成本势必会下降,但是配送中心的工作必然会加重。

1.1.2 多个设施选址问题

对于大部分的企业来说一般需要决定两个或多个的设施的选址,而且它们之间不是相互孤立的,要考虑彼此之间的影响,因此问题的解决就变的相对复杂了。

1.2 按照选址目标区域的特征,可将选址问题分为连续选址、网格选址及离散选址[1]。

1.2.1 连续选址,可选址区域是一个连续的平面,不去过多地考虑其它结构及现实因素,在这个连续的平面中可能的选址位置的数量是无限的[2]。连续选址模型的可选址区域是连续的,因此可以在连续的区域内进行建模求解,一般可以求得最优解。这个问题的缺点是只是简単的进行最优解的求解,而没有考虑现实问题,求解出的地点很可能是并不适合建立物流配送中心的点,如求解出的点很可能就是一片海洋。

1.2.2 网格选址,可选区域是一个平面,这个平面被细分为许多相等面积的区域,通常情况下是被细分为许多面积相等的正方形。可选址的数量通常是有限的,相比连续性选址较少,但是总的来说数量也还是相当大。网格选址存在一个问题,就是进行相关的计算和数据收集的成本较高。

1.2.3 离散选址,可选区域一般是已经给定的几个离散的可选点,它是一个离散的候选位置的集合,可选点的数量较少且是有限的。在选址的前期就已经对可选址的地点进行了初步的确定,也就是缩减了可选点的范围,再在给定的范围内选择较优的可建地址。这个问题优点是前期已经对可选区域进行了筛检,因此后期的计算量较小并且这种模型较切合实际的,这个模型的缺点是需要花费大量的资金进行数据资料的收集。

2 解决选址问题的方法

近年来,物流业迅速发展,无论国内国外都取得了长足的发展,于此同时物流理论也得到了进一步完善,加之信息技术的发展尤其是计算机的使用,对于物流选址方法不断地完善,终结归纳起来大致可以分为如下四种方法[3]:

2.1 专家选择法

专家选择法是由专家进行分析研究,依靠专家自身的知识和经验,对可选址的社会环境和客观背景进行分析评估。它的评定结果更多的会受到专家自身能力的限制,结果的准确性往往会由专家的自身的水平所决定,因此这种方法更具有主观性,带有较浓厚的个人色彩。在专家选择法中,我们经常用到的有因素评分法和德尔菲法。

2.2 解析法

解析法不同于前面所说的专家选择法,解析法更注重精确性,通常是利用客观的数据进行说话。这种方法主要是建立数学模型,并对模型进行求解,根据得到的数据进一步确定物流中心的建设点。模型的建立根据求解目的的不同进行划分,可以分为两类:1)基于成本的模型,2)基于收益的模型。现实生活中我们遇到的物流配送中心的模型建立求解,更多的是基于成本的模型。如较经典模型中的重心法模型、p-中值模型。利用解析法的优点是进行建模求解,利用数据说话,对于选择合适的可选点更有说服力。同样,模型的建立和求解往往并不是那么简单。

2.3 模拟法

模拟方法的兴起和发展离不开计算机的产生和应用。对于一个实际的问题可以用数学方法和一些逻辑关系进行抽象表达,然后利用计算机强大的计算和模拟功能,对实际问题进行模拟,给人一种更为直观的感觉。选址时,可以利用计算机模拟多种不同的组合方式,从而确定最佳组合。模拟方法不只可以用于选址中,现实生活中其他方面也有很广泛的应用,比如地震破坏例分析、房屋受力分析等。利用数学方法和逻辑关系对问题的表述越接近现实,结果越可信,分析者预定的组合方案越接近最佳组合,结果越趋近于最优。

2.4 启发式算法

启发式算法其实是模型求解的方法,是针对模型求解而言的,它是经过反复的运算判断,不断地向最优解逼近的求解方法。求出一个解,按照一定的方法要求进行修改,然后再此基础上继续进行求解计算,直到获得相对满意的结果。在这里我们可以看到,求得的解并非是最优解,而是趋近于最优解的解。启发式算法模型简单,求解方便且更接近于实际,因此受到越来越多的学者的青睐。我们看一下常用的启发式算法的分类构造算法、不完全优化算法、两阶段法和改进算法。其中对于改进算法又进行了细分包括常用的遗传算法、人工神经网络算法、模拟退火算法、爬山算法、贪心算法、蚁群算法及禁忌搜索算法[4]。

3 经典选址的模型

物流中心的位置选在什么地方,对于企业来说是一个非常重要的问题:准确的物流选址能够节约企业物流成本,让物流中心的效应最大化。接下来我们根据连续性选址问题和非连续性选址问题对应的模型来看几个经典选址的模型。

3.1 连续型选址问题的经典模型

3.1.1 重心法

重心法是较简单处理选址问题的方法,它适用于静态、连续的选址问题[5]。

重心法选址解决的问题是就将一新的设施布置到与现在设施有关的这样一个二维空间去[6]。

我们根据原有设施所在地建立一個坐标系,将原有设施所在点,抽象成坐标系内对应的一点,用Pi(xi,yi)标注出原有设施的位置,对于所要求的设施位置,我们利用P0(x0,y0)来表示。利用中心法确定P0(x0,y0)的具体位置,计算如下:

3.1.2 交叉中值模型

交叉中值模型也是一种解决连续型选址问题的模型,它是利用加权的城市距离最小这一原则就行的建模求解。其目标函数为:

3.2 离散型选址问题的经典模型

3.2.1 P-中值模型

它是指需求点的位置和数量是确定的,各选点给定的是有限的位置。模型建立是按照满足所选点到需求点的运输费用最低这一原则,为p个设施寻求最合适的位置,并为需求点指派一个合适的设施与之对应。目标函数及约束条件:

3.2.2 覆盖选址模型

覆盖问题[7],是指设施对于需求点的覆盖问题。设施i对于需求点j的覆盖是指设施i能在规定的时间或距离内满足需求点j的需求。

覆盖问题分为两大类,集合覆盖问题及最大覆盖问题。集合覆盖和最大覆盖解决的问题不同,集合覆盖是解决全部覆盖所有的需求点,在这一前提下需要安置多少设施这一问题;而最大覆盖解决的问题是设施的数目已经确定,如何选择合适的点来安置这些设施,使其尽可能多的覆盖需求点。在现实生活中最大覆盖问题更符合实际因此也更为人们所关注。

3.2.3 反町氏法

利用反町氏法进行选址问题的求解过程是首先利用线性规划运输法确定各个配送中心的市场占有率,求出它们的重心。其次确定配送中心各自的位置,这里采用的方法是混合整数规划法。目标函数与约束条件如下:

上述模型行先确定个目标函数,进而建立约束条件进行求解,根据求解的结果确定较佳的各选址作为配送中心的建设点。但是这种模型考虑的因素过于单一,成本最低或运距最短只是配送中心所要满足的一个要求。配送中心的目的是实现盈利,使顾客满意。但上述模型中并不能体现顾客的满意度。此外上述模型的求解计算均是利用的精确值,因此也就存在一定的局限性,二方面简单的利用精确值进行表述,使实际问题过于简单化、精确化偏离事实,另一方面限制了求解的范围,使求解范围狭隘化。

【参考文献】

[1]Daskin M S. Network and discrete location:models, algorithms and applications [M]. New York Wiley Interscience,1995.

[2]邱法聚,张予川.易荃物流配送中心连续型选址模型的推广[J].物流科技,2007:16-19.

[3]孙焰.现代物流管理技术——建模理论及算法设计[M].上海:同济大学出版社,2005.

[4]肖美华,王命延,王洪发,彭正文,等.基于遗传算法和模拟退火算法的布局问题研究计算[J].机工程与应用,2003,36:70-72.

[5]吴清一.物流管理[M].北京:中国物资出版社,2003:237-259.

[6]龙江,朱海燕.城市物流系统规划与建设[M].中国物质出版社,2004.

[7]Toregas C, Swain R, Revelte C et al. The location of emergency service facilities[J].Operations Research, 1971,19(6):1363-137.

[责任编辑:朱丽娜]