李音韵
摘 要:电子商务拉近了消费者与生产厂家的距离和关系,消费者可通过互联网联系厂家,并完成交易,大大缩减了中间环节,因此也就减少了费用开支。大数据的出现,进一步放大这一功能,供应商、电商更以及用户之间的信息交流更加便捷。该文将对当前大数据时代背景下的电子商务服务模式革新进行分析,并在此基础上谈一下个人的观点和认识,仅供参考。
关键词:电子商务 大数据 服务模式 研究
中图分类号:F713.36 文献标识码:A 文章编号:1672-3791(2016)09(b)-0070-02
较之于传统的营销市场而言,电子商务发生了非常大的改变,其主要是基于互联网进行商业交易,原有数据分法已经无法有效满足现代商务需求。电子商务可对各环节数据进行分析和存储,改进企业不足之处,增加企业交易量。在当前大数据时代背景下,电子商务服务模式革新,主要表现在以下几个方面。
1 强化信息检索,提供个性化服务
作为公共信息平台,互联网上有海量信息,消费者通过网络可以购买所需的商品、服务,检索是一种较为常用的方法。然而,大数据技术方法的运用,大大提高了信息检索精度,从而让用户可在海量信息中快速找到所需的信息资源。在此过程中,电商企业应当不断创新业务,提供服务定位准确度,并对产品进行细分、细化,从而使消费者在浏览网页时精准定位服务,节省检索时间。同时,还要为广大消费者提供个性化服务,及时引导客户,立足于個性化服务水平提高与提供第三方服务的有机结合,深挖导购型服务模式。需大数据集合体,比如消费者浏览、购买以及消费喜好等历史记录。电子商务本身也有短板,仅靠视觉、服务以及搜索引擎等营销工具进行消费。比如,在销售香水时,用户不闻气味是难以做出购买决定的。对于这一交易瓶颈,电商企业应当抓住大数据竞争特点,针对大数据深挖数据,以此来创造商机。通过挖掘大数据,可导出个性化服务和导购方式。一是,个性化广告。在浏览网页时看到某公司发布的广告,而且该产品或者服务正是自己所需的。该种现象背后的主要原因在于利用了大数据,通过对消费者的网页浏览分析,给用户推荐广告。以Google为例,之所以Adsense业务可以很好地提高所做广告成效,究其原因,主要是对消费者或者潜在消费者进行搜索,并且深挖他们对网站的关注度,并在网上追踪消费者的浏览动向,在联盟网站上为消费者提供兴趣匹配的产品和服务。二是,个性化推荐。以京东网、淘宝网等较大的电商平台网站为例,诸多产品使消费者举棋不定,消费者常做的事情就是反复对比产品、服务的优缺点,在查看买家评论以后,做出是否选择购买的决定。然而,在此过程中用户非常痛苦,若后台可以对海量消费者行为信息数据及时、全面地进行分析,并且推荐阶段性产品或者服务,则可以有效增加销售额。
从实践来看,常用的推荐算法是物品相似度、用户相似度基础上的推荐,而多数电商平台和网站上采用的是物品相似度推荐,如何对用户兴趣进行准确度量是一个非常难的课题。用户相似度推荐多应用在新闻评论上,比如根据女性客户所填写的相关受孕信息,美国Web MD就会定期给这些准妈妈们邮寄EDM,并且提醒她们在各个孕期需要注意的相关事项,比如产前思想准备、心理和生理变化、需摄入哪些营养成分以及产后如何尽快恢复和婴儿育养等内容。从国内市场来看,推荐业务的网站有“当当”“亚马逊”等网站,主要针对的是消费者所需,给予他们动态的信息推荐。比如,亚马逊网站的核心推荐引擎是消费者在过去某段时间内行为总结,其中包括消费者的收藏商品、喜欢商品以及浏览足迹等。
2 降低流通环节成本,细化领域服务
大数据时代背景下的电子商务技术应用,使人们不再局限于时间、空间的约束,也不会出现传统购物过程中的诸多限制,可按照个人的意愿网上购物,商家与消费者之间的交流就会比较多。大数据时代,网络成了一个“地球村”,商家可直面全球各地的消费者。对于各地区、各类型的消费者而言,商家可收集其信息资料,通过数据分析,快速找到与之相匹配的消费者或者消费人群,大大缩减了产品、服务的中间流通环节和成本。
同时,还要进一步细分领域服务,并且立足于专业服务、中间服务之间的有机结合,深挖细分品牌电子商务服务模式。从国内限制来看,可用多头垄断来形容国内电商,比如京东、淘宝以及当当和亚马逊等电商企业,它们占据了大半个市场,而中小型电商企业的崛起非常困难。之所以会出现这样的问题,很大程度上是因为物流、营销成本之间不匹配。在当前大数据时代背景下,我们应当准确把握住垂直细分领域的各个环节,做精、做专,才有机会赢得一席之地。值得一提的是,行业垂直细分的电商网站规模一般都比较小,而且成本相对较低,可以有效发掘和分析消费者的信息资料,从而使之更加专注于为特定群体提供高质量的服务,而且也更能够有效了解产业链上的客户所需。以服装行业为例,麦包包、凡客等,在网上已经找到了自己的垂直细分领域,并且与上下游企业共同打造产业链,从而实现了短周转率、零库存,大大降低了运营成本,提高了效率。再如,服务行业,最近一段时间名声大噪的“嘀嘀打车”即为一个典型的案例。这款打车软件与手机联系起来,正在孕育一个细分市场,在前3个月时间里就积累了超过5 000辆出租车,确保用户在市区以及非交通高峰期,能够在一分半时间内利用“嘀嘀打车”软件成功打上车。利用手机软件打车市场建立伊始, “嘀嘀打车”需要广大出租车司机们认知、认同和应用,为司机们有效降低空载率、让更多乘客受益,起到了非常重要的作用,同时这也是其服务模式革新的成功体现。
3 保证云信息存储及数据产品服务质量和效率
大数据时代,电商企业在其发展过程中需要存储、处理大量的信息资料。传统信息资料的存储模式,已经无法有效满足新时期电商企业的需求;然而,云存储技术的应用,为其提供了安全、便捷的储存空间和服务。为了满足广大客户的存储需求,科技公司纷纷推出云存储,其功能非常强大,而且信息调用质量、效率以及安全性更高,深受电商企业欢迎。
同时,数据产品服务也是大数据时代背景下电子商务服务模式革新的表现,其主要是基于基础服务与自主服务之间的相关结合,充分挖掘数据服务模型。当前时代,数据的重要性不可估量,每一个电商企业都想获取顾客信息,然而传统模式下它们却没有预算、技术允许解读大数据。在该种情况下,对于那些具有一定的平台、资金的电商企业可利用自身优势,将所获得的信息数据产品化包装以后销售给中小企业,这是电子商务服务模式的基本架构。比如,GNIP基于若干个API的应用,将数据信息集合成统一格式,有利于Twitter以及Facebook和新浪微博等网站进行数据挖掘;再如,淘宝基于专业数据挖掘技术的应用,形成了一个面向商家的数据产品,并且利用淘宝这一数据开发平台形成的第三方数据进行新产品研发。大数据时代背景下的电商企业,对消费者数据信息的需求量更大,将数据信息构建需要搭接销售环节,将成为新型数据服务模式。
4 结语
总而言之,大数据时代的到来,使得大数据信息处理技术以及云存储逐渐成为现代电商企业的竞争力所在,通过对收集到的数据信息分析研究,不断革新电子商务服务模式,可以为电商企业带来更多的发展思路。大数据时代背景下,电商企业如何利用先进的技术手段深入挖掘有价值的信息来提高服务质量,成为当前电商企业面临的重要课题。
参考文献
[1] 高小东.大数据时代下电子商务服务模式的创新探讨[J].知识经济,2016(3):34,66.
[2] 高小东.基于大数据背景下的电子商务模式的创新[J].电子商务,2015(11):7,15.
[3] 蔡永鸿,刘莹.基于大数据的电商企业管理模式研究[J].中国商贸,2014(31):74-75.
[4] 冯芷艳,郭迅华,曾大军,等.大数据背景下商务管理研究若干前沿课题[J].管理科学学报,2013(1):1-9.