张磊阳,贺 敏,李 玥,裘福荣,陈文文,吴 雨,杨蒋伟,蒋 健
(上海中医药大学附属曙光医院临床药理科,上海 201203)
研究进展
抑郁症动物模型的研究进展
张磊阳,贺 敏,李 玥,裘福荣,陈文文,吴 雨,杨蒋伟,蒋 健*
(上海中医药大学附属曙光医院临床药理科,上海 201203)
近年来抑郁症发病率逐年上升,严重危害了人类的身心健康,但是其发病机制尚未明确。而动物模型可以模拟人类抑郁症的疾病状态,被广泛运用于抑郁症发病机制研究和抗抑郁新药的研发。抑郁症动物模型根据造模方式不同可以分为以下几类:应激造模,手术造模,药物诱发造模和遗传造模。这些模型可以从不同的方面来解释抑郁症的发生,比如神经递质及其受体和转运蛋白、神经营养因子、神经内分泌系统、炎症假说等,在抑郁症的研究中发挥重要作用。该综述就常用的啮齿类动物抑郁症模型进行概述和评价,为抑郁症的研究提供参考。
抑郁症;啮齿类;动物模型;发病机制
抑郁症是一种常见的精神障碍性疾病,其核心症状为心境低落和兴趣减退,同时可伴有认知功能损害、意志活动减退、饮食睡眠障碍及各种躯体症状。抑郁症的发病率逐年增高[1],WHO估计全球患此病者逾亿。尽管如此,我们对抑郁症的病因、发病机制仍知之甚少,合理的抑郁症动物模型是筛选抗抑郁药物并明确作用机理的重要手段。本文就目前应用较多的啮齿类动物的抑郁症模型进行介绍与评价,以期为抑郁症的动物实验研究提供参考。
应激是引起人类及动物抑郁的主要因素之一,而抗抑郁药物可纠正应激引起的抑郁。应激是制作抑郁症动物模型的主要方法之一,目前常用的有以下几种:
1.1行为绝望模型
主要包括大小鼠强迫游泳模型和小鼠悬尾模型,此类模型属于急性应激模型。
1.1.1 大小鼠强迫游泳实验(forced swimming test,FST)
该实验是将大鼠或小鼠置于一个局限且无法逃脱的空间游泳,当多次逃逸无效后,其放弃挣扎而漂浮在水面上呈不动的状态,这种状态被称为“绝望”状态[2]。此法简单易行,可信度较高,多数抗抑郁药能减少动物游泳不动的时间,可用于抗抑郁药的初筛,且与临床药效显著相关。该模型也常用于其他抑郁模型建立成功与否的判断。但此模型有假阳性反应,一些精神兴奋剂如苯丙胺也会降低不动的时间;品系差异也较大,比如检测氟西汀的抗抑郁效果时NMRI小鼠要比C57BL6小鼠更敏感[3]。此外,对“不动”的判定易带有主观性——“不动”可能是疲劳产生的,也可能是鼠保存体力的生存策略。另外,实验动物易受水温、水深以及周围环境的影响。
1.1.2 小鼠悬尾实验(tail suspension test,TST)
该实验将动物头部向下悬挂,动物为克服不正常体位,经多次挣扎仍不能摆脱困境后,出现间断性不动,显示“行为绝望”状态。该方法是抗抑郁药物活性筛选中具有高灵敏度的行为学方法,又因其快速、方便,自1985年提出至今,一直被广为接受和应用。本方法也是评价抑郁症模型造模成功与否的常用检验方法。但该模型也有品系差异,如和其他品系的小鼠相比较,C57BL/6J小鼠有更长的不动时间[4],说明C57BL/6J小鼠在无法逃避的情况下易于造成行为绝望,可能更适合用于急性应激抑郁模型的建立。
1.2习得性无助模型(learnedhelplessnessmodel,LH)
该模型由Seligman等提出,常用于抗抑郁药的筛选及抑郁症发病机制的研究,是众多抑郁症病理生理学理论概念的来源[5, 6]。当个体暴露于无法控制的应激(如电击)时,将在之后的学习活动中表现出行为欠缺,如逃避行为障碍、自发活动减少;同时伴有其他的行为改变,如食欲减退、体重减轻、运动性活动减少、攻击性降低等。而这种逃避行为障碍可以通过抗抑郁药治疗逆转。研究表明,在习得性无助模型中,小鼠海马区脑源性神经营养因子(brain-derived neurotrophic factor,BDNF)基因表达受到抑制,致使BDNF水平降低[7];且BDNF在LH模型鼠不同脑区的作用及含量不同,在内侧前额叶皮质、海马CA3区和海马齿状回明显减少,而在伏隔核却明显增加[8]。除此之外,LH大鼠大脑额叶皮质及海马区ERK1/2信号通路功能降低[9],线粒体内18×103转位蛋白表达减少[10]。
LH模型也存在争议:动物暴露于无法控制的应激时,它们会变得无助,也可能学会有意不动;并没有证据表明抑郁症患者的临床症状,如抑郁、绝望以及消极的认识等是由于习得性无助这一心理过程所导致的;正常人在无法逃避的时候,并没有形成习得性无助;逃避障碍可能仅是因为恐惧引起,并非是无助[11]。
1.3社会失败应激模型
也可以称为定居者与入侵者的测试,该法是运用同一物种间引发冲突进而产生精神心理压力来实现。当一只雄性的啮齿类动物被重复多次放入居住着另一只雄性好斗、有支配地位的年长啮齿类动物的笼子里,入侵者会被攻击,最终表现出快感缺乏等症状[12]。该模型可以引起脑内从器质到功能的多方面改变,对于抑郁症及抗抑郁药的研究具有较大价值。
研究发现社会失败应激模型鼠的海马体及内侧前额叶皮质的体积减少,下丘脑-垂体-肾上腺(hypothalamic-pituitary-adrenal,HPA)轴功能亢进,皮质醇分泌增多,前额叶皮质及海马区的BDNF表达下降,BDNF-TrkB通路功能失调[13, 14];单胺神经递质及其转运体等均出现了改变[15, 16];小鼠脑内的犬尿氨酸通路活性增高[17]。通过转录组测序技术发现,模型小鼠的下丘脑和海马区的大部分核糖体基因表达下调[18]。另外,研究中也发现模型鼠前脑额叶皮质区的谷氨酸及γ-氨基丁酸的功能异常,海马区的糖皮质激素受体mRNA表达下降,前炎性细胞因子增多[19-21]。
但该模型能同时引起抑郁和焦虑的行为表现,可能更适合于具有二者混合特征的机制研究[22]。
1.4慢性束缚应激模型(chronicrestraintstress,CRS)
慢性束缚应激模型是将啮齿类动物重复地置于束缚管内,限制其行动自由一段时间而造模。最终啮齿类动物表现出快感缺失、体重减轻、饮食减少等抑郁样症状,这些均可以被抗抑郁药所改善。这种模型制作简便,作为一种非损伤性刺激,与人类的疾病过程有相似性,因此是一种常用的应激模型,实验中经常联合慢性温和应激模型造模。
该模型广泛用于研究啮齿类动物不同脑区(如海马、前额叶皮质、杏仁核及伏隔核等)形态、激素水平及行为学的改变。研究表明,该模型鼠海马区及前额叶皮质的BDNF表达及ERK的磷酸化水平均降低,Bcl-2 mRNA表达下调,Bax mRNA表达上调,杏仁核的神经元异常,脑内线粒体功能异常[23-25]。研究也发现该模型的前炎性细胞因子增多,抗炎性细胞因子减少[26]。
1.5慢性不可预知温和应激模型(chronicunpredictablemildstress,CUMS)
在一定时间内让啮齿类动物暴露于一系列重复的不可预知的温和刺激下,从而诱导出抑郁相关的行为,大部分抑郁症状可被抗抑郁药逆转。此模型体现了抑郁症发病的多个方面,目前应用最为广泛。模型中应激因子较多且应激强度低,模型具有高度的有效性,效果可以持续几个月,抗抑郁药治疗有效,治疗的时间进程及效果都与临床治疗情形相似,对研究抗抑郁药的临床作用机制及抑郁症的病理生理机制具有一定价值。
研究表明该模型可以诱导持久的快感缺乏,还可使动物记忆受损、社交能力下降、体重减轻、皮质醇分泌增多、体温降低、夜间褪黑素分泌增多,并会引起焦虑样行为;模型鼠生物钟基因也发生改变,前额叶皮质Per1和Per2基因的表达降低[27-29]。此外,该模型还存在p11基因甲基化的表观遗传修饰[30],模型鼠海马区及前额叶皮质的BDNF水平及Na+, K+-ATP酶活性降低[31],HPA轴亢进,5-HT再摄取增多,NF-κB信号通路活性增强,NRG1/ErbB信号通路功能异常[32-34]。
但此模型实际操作过程的工作量较大,持续时间较长。
1.6母婴分离模型(maternalseparation,MS)
早期的生活应激刺激会使啮齿类动物产生持久的生理学和行为学的改变,会增加动物成年后情感紊乱的风险。母婴分离属于早期生活应激的一种,短暂的分离能产生积极的影响,使母鼠更关心幼鼠,重复多次地把幼鼠和母鼠分离会使幼鼠的生理机能和行为产生长久的改变,如产生抑郁样行为、HPA轴活性增强,并会改变基因的表达[35, 36]。雌鼠更容易出现情感的改变,并且在和情绪相关的脑区发现色氨酸-犬尿氨酸代谢途径紊乱,及产生神经炎症反应[37]。有研究表明,母婴分离后子鼠海马区内Tlr-4基因及其相关的信号蛋白基因Myd88表达增多[38]。该模型主要用于早期应激对子鼠成年后病理生理及行为变化的研究。
常用的是嗅球切除模型。嗅球位于端脑前端,与边缘系统功能有关,影响行为、情绪和内分泌。大鼠切除双侧嗅球后嗅觉丧失,被动回避学习能力下降,应激反应增强,攻击行为增强,强迫游泳实验中静止时间延长。这些行为均可以被抗抑郁药逆转。模型鼠病变的机制与抑郁症患者类似[39]。
该模型的神经生化机制改变包括单胺神经递质浓度和谷氨酸受体功能[40-42]。此外,也存在海马体内BDNF水平降低,血清皮质酮降低,炎症因子、凋亡蛋白增多及氧化损伤等现象。
此模型抑郁效果明显、可靠性好,且抑郁动物的病理生理改变与人类抑郁相似,对检测抗抑郁剂有较高的选择价值。常用于抗抑郁药的次筛以及作用机制研究。
但对实验手术技术要求高,实验中动物死亡率较高,模型有品系差异。
此类模型是早期基于药物之间的相互作用而产生的,主要筛选针对专一靶点的抗抑郁药。严格来讲,这些模型不应称为动物抑郁模型,但可以用来探讨抗抑郁药的药理作用性质,或用于初筛未知化合物。
这类模型主要基于抑郁症的单胺假说,如利血平诱导的抑郁模型,可以非选择性的耗竭脑内的单胺类神经递质,从而诱导啮齿类动物体温下降及运动不能症状[43]。精神兴奋剂的戒断模型也会诱发抑郁样的改变,啮齿类动物在强迫游泳实验及悬尾实验中不动时间延长[44]。
这类模型与人类抑郁症的发生机制之间存在一定的差距,目前使用较少。
遗传型抑郁动物模型所使用的动物来自于自然突变或近交系,脑内机制与抑郁患者相似,对抗抑郁药的反应更为良好。主要介绍以下两种模型。
4.1Flinderssensitiveratline(FSL)大鼠模型
最初选择性培育FSL大鼠是为了得到抗胆碱酯酶个体[45],后发现FSL大鼠表现出类似于人类抑郁样症状,还发生了食欲及精神运动功能减退等行为学方面的改变,昼夜节律出现异常,五羟色胺、多巴胺、胆碱能及神经肽Y均发生改变,但HPA轴、γ-氨基丁酸水平及认知功能正常[46, 47]。此模型大鼠和抑郁症患者的行为学表现、神经化学和药理学机制类似,是一种非常有效的检测抗抑郁药的动物模型。
4.2Wistar-Kyoto(WKY)大鼠模型
该品系大鼠源自自发性高血压大鼠,后来表现出和抑郁症患者类似的激素水平、行为学及生理学的异常,故被作为一种遗传型的抑郁症模型[48]。动物在强迫游泳试验中静止时间长而稳定,出现社交回避症状,HPA轴功能亢进,血清皮质酮增多[49]。该品系大鼠中缝背核及前额叶皮质的五羟色胺水平出现了与抑郁症患者类似的异常[50],海马体积减少[51],脑与血清的BDNF含量较低[52],对SSRIs类抗抑郁药不敏感。
除以上模型外,还有基因敲除模型、操作行为模型——大鼠72 s低频差式强化程序模型、电刺激小鼠角膜引起的不动状态模型、双侧卵巢切除抑郁模型,等等。这些模型均复制或模拟了人类抑郁症的部分特征,可以作为抗抑郁药及抑郁症研究的方法。
综上所述,抑郁症动物模型无论对于新的抗抑郁药物开发还是对于抑郁症发病机制的研究都是一项必不可少的手段。目前建立抑郁症动物模型有多种方法,慢性不可预知温和应激模型及行为绝望模型应用较多,但各种模型都存在一些局限性,多种模型的联合应用也许可以提高实验结果的可信度,选用敏感度高的品系来造模更是事半功倍。此外,应多增加对遗传性抑郁模型和早期应激模型如母婴分离模型的研究,以解决逐渐增多的青少年抑郁症问题。抑郁症动物模型还有待深入研究,以期进一步完善模型,为抑郁症的研究提供更有益的帮助。
[1] Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030 [J]. PLoS Med, 2006, 3(11): 2011-2029.
[2] Porsolt RD, Le Pichon M, Jalfre M. Depression: a new animal model sensitive to antidepressant treatments [J]. Nature, 1977, 266(5604): 730-732.
[3] Castagné V, Porsolt RD, Moser P. Use of latency to immobility improves detection of antidepressant-like activity in the behavioral despair test in the mouse [J]. Eur J Pharmacol, 2009, 616(1-3): 128-133.
[4] Ripoll N, David DJ, Dailly E, et al. Antidepressant-like effects in various mice strains in the tail suspension test [J]. Behav Brain Res, 2003, 143(2): 193-200.
[5] Overmier JB, Seligman ME. Effects of inescapable shock upon subsequent escape and avoidance responding [J]. J Comp Physiol Psychol, 1967, 63(1): 28-33.
[6] Vollmayr B, Gass P. Learned helplessness: unique features and translational value of a cognitive depression model [J]. Cell Tissue Res, 2013, 354(1): 171-178.
[7] Su CL, Su CW, Hsiao YH, et al. Epigenetic regulation of BDNF in the learned helplessness-induced animal model of depression [J]. J Psychiatr Res, 2016, 76: 101-110.
[8] Shirayama Y, Yang C, Zhang JC, et al. Alterations in brain-derived neurotrophic factor (BDNF) and its precursor proBDNF in the brain regions of a learned helplessness rat model and the antidepressant effects of a TrkB agonist and antagonist [J]. Eur Neuropsychopharmacol, 2015, 25(12): 2449-2458.
[9] Dwivedi Y, Zhang H. Altered ERK1/2 signaling in the brain of learned helpless rats: relevance in vulnerability to developing stress-induced depression [J]. Neural Plast, 2016, 2016: 7383724.
[10] Li D, Zheng J, Wang M, et al. Wuling powder prevents the depression-like behavior in learned helplessness mice model through improving the TSPO mediated-mitophagy [J]. J Ethnopharmacol, 2016, 186: 181-188.
[11] Landgraf D, Long J, Der-Avakian A, et al. Dissociation of learned helplessness and fear conditioning in mice: a mouse model of depression [J]. PLoS One, 2015, 10(4): e0125892.
[12] Donahue RJ, Muschamp JW, Russo SJ, et al. Effects of striatal ΔFosB overexpression and ketamine on social defeat stress-induced anhedonia in mice [J]. Biol Psychiatry, 2014, 76(7): 550-558.
[13] Hollis F, Kabbaj M. Social defeat as an animal model for depression [J]. ILAR J, 2014, 55(2): 221-232.
[14] Ren Q, Ma M, Ishima T, et al. Gene deficiency and pharmacological inhibition of soluble epoxide hydrolase confers resilience to repeated social defeat stress [J]. Proc Natl Acad Sci U S A, 2016, 113(13): 1944-1952.
[15] Chen P, Fan Y, Li Y, et al. Chronic social defeat up-regulates expression of norepinephrine transporter in rat brains [J]. Neurochem Int, 2012, 60(1): 9-20.
[16] Zhang J, Fan Y, Li Y, et al. Chronic social defeat up-regulates expression of the serotonin transporter in rat dorsal raphe nucleus and projection regions in a glucocorticoid-dependent manner [J]. J Neurochem, 2012, 123(6): 1054-1068.
[17] Fuertig R, Azzinnari D, Bergamini G, et al. Mouse chronic social stress increases blood and brain kynurenine pathway activity and fear behaviour: Both effects are reversed by inhibition of indoleamine 2,3-dioxygenase [J]. Brain Behav Immun, 2016, 54: 59-72.
[18] Smagin DA, Kovalenko IL, Galyamina AG, et al. Dysfunction in ribosomal gene expression in the hypothalamus and hippocampus following chronic social defeat stress in male mice as revealed by RNA-Seq [J]. Neural Plast, 2016, 2016: 3289187.
[19] Veeraiah P, Noronha JM, Maitra S, et al. Dysfunctional glutamatergic and γ-aminobutyric acidergic activities in prefrontal cortex of mice in social defeat model of depression [J]. Biol Psychiatry, 2014, 76(3): 231-238.
[20] Wu X, Wu J, Xia S, et al. Icaritin opposes the development of social aversion after defeat stress via increases of GR mRNA and BDNF mRNA in mice [J]. Behav Brain Res, 2013, 256: 602-608.
[21] Wood SK, Wood CS, Lombard CM, et al. Inflammatory factors mediate vulnerability to a social stress-induced depressive-like phenotype in passive coping rats [J]. Biol Psychiatry, 2015, 78(1): 38-48.
[22] Chaouloff F. Social stress models in depression research: What do they tell us? [J]. Cell Tissue Res, 2013, 354(1): 179-190.
[23] Leem YH, Yoon SS, Kim YH, et al. Disrupted MEK/ERK signaling in the medial orbital cortex and dorsal endopiriform nuclei of the prefrontal cortex in a chronic restraint stress mouse model of depression [J]. Neurosci Lett, 2014, 580: 163-168.
[24] Padival MA, Blume SR, Rosenkranz JA. Repeated restraint stress exerts different impact on structure of neurons in the lateral and basal nuclei of the amygdale [J]. Neuroscience, 2013, 246: 230-242.
[25] Aboul-Fotouh S. Chronic treatment with coenzyme Q10 reverses restraint stress-induced anhedonia and enhances brain mitochondrial respiratory chain and creatine kinase activities in rats [J]. Behav Pharmacol, 2013, 24(7): 552-560.
[26] Voorhees JL, Tarr AJ, Wohleb ES, et al. Prolonged restraint stress increases IL-6, reduces IL-10, and causes persistent depressive-like behavior that is reversed by recombinant IL-10 [J]. PLoS One, 2013, 8(3): e58488.
[27] Erburu M, Cajaleon L, Guruceaga E, et al. Chronic mild stress and imipramine treatment elicit opposite changes in behavior and in gene expression in the mouse prefrontal cortex [J]. Pharmacol Biochem Behav, 2015, 135: 227-236.
[28] Christiansen SL, Højgaard K, Wiborg O, et al. Disturbed diurnal rhythm of three classical phase markers in the chronic mild stress rat model of depression [J]. Neurosci Res, 2016, 110: 43-48.
[29] Calabrese F, Savino E, Papp M, et al. Chronic mild stress-induced alterations of clock gene expression in rat prefrontal cortex: modulatory effects of prolonged lurasidone treatment [J]. Pharmacol Res, 2016, 104: 140-150.
[30] Theilmann W, Kleimann A, Rhein M, et al. Behavioral differences of male Wistar rats from different vendors in vulnerability and resilience to chronic mild stress are reflected in epigenetic regulation and expression ofp11 [J]. Brain Res, 2016, 1642: 505-515.
[31] Filho CB, Jesse CR, Donato F, et al. Chronic unpredictable mild stress decreases BDNF and NGF levels and Na+,K+-ATPase activity in the hippocampus and prefrontal cortex of mice: antidepressant effect of chrysin [J]. Neuroscience, 2015, 289: 367-380.
[32] Pesarico AP, Sartori G, Brüning CA, et al. A novel isoquinoline compound abolishes chronic unpredictable mild stress-induced depressive-like behavior in mice [J]. Behav Brain Res, 2016, 307: 73-83.
[33] Xing H, Zhang K, Zhang R, et al. Antidepressant-like effect of the water extract of the fixed combination ofGardeniajasminoides,CitrusaurantiumandMagnoliaofficinalisin a rat model of chronic unpredictable mild stress [J]. Phytomedicine, 2015, 22(13): 1178-1185.
[34] Dang R, Cai H, Zhang L, et al. Dysregulation of Neuregulin-1/ErbB signaling in the prefrontal cortex and hippocampus of rats exposed to chronic unpredictable mild stress [J]. Physiol Behav, 2016, 154: 145-150.
[35] Vetulani J. Early maternal separation: a rodent model of depression and a prevailing human condition [J]. Pharmacol Rep, 2013, 65(6): 1451-1461.
[36] Plotsky PM, Meaney MJ. Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats [J]. Brain Res Mol Brain Res, 1993, 18(3): 195-200.
[37] Gracia-Rubio I, Moscoso-Castro M, Pozo OJ, et al. Maternal separation induces neuroinflammation and long-lasting emotional alterations in mice [J]. Prog Neuropsychopharmacol Biol Psychiatry, 2016, 65: 104-117.
[38] Sadeghi M, Peeri M, Hosseini MJ. Adolescent voluntary exercise attenuated hippocampal innate immunity responses and depressive-like behaviors following maternal separation stress in male rats [J]. Physiol Behav, 2016, 163: 177-183.
[39] Yuan TF, Slotnick BM. Roles of olfactory system dysfunction in depression [J]. Prog Neuropsychopharmacol Biol Psychiatry, 2014, 54: 26-30.
[40] Oba A, Nakagawasai O, Onogi H, et al. Chronic fluvoxamine treatment changes 5-HT2A/2Creceptor-mediated behavior in olfactory bulbectomized mice [J]. Life Sci, 2013, 92(2): 119-124.
[41] Hirose N, Saitoh A, Kamei J. Involvement of glutamatergicN-methyl-D-aspartate receptors in the expression of increased head-dipping behaviors in the hole-board tests of olfactory bulbectomized mice [J]. Behav Brain Res, 2016, 312: 313-320.
[42] Wierońska JM, Legutko B, Dudys D, et al. Olfactory bulbectomy and amitriptyline treatment influences mGlu receptors expression in the mouse brain hippocampus [J]. Pharmacol Rep, 2008, 60(6): 844-855.
[43] Leith NJ, Barrett RJ. Effects of chronic amphetamine or reserpine on self-stimulation responding: animal model of depression? [J]. Psychopharmacology (Berl), 1980, 72(1): 9-15.
[44] Barr AM, Markou A. Psychostimulant withdrawal as an inducing condition in animal models of depression [J]. Neurosci Biobehav Rev, 2005, 29(4-5): 675-706.
[45] Overstreet DH. The flinders sensitive line rats: a genetic animal model of depression [J]. Neurosci Biobehav Rev, 1993, 17(1): 51-68.
[46] Overstreet DH, Friedman E, Mathé AA, et al. The Flinders Sensitive Line rat: a selectively bred putative animal model of depression [J]. Neurosci Biobehav Rev, 2005, 29(4-5): 739-759.
[47] Overstreet DH, Wegener G. The Flinders Sensitive Line rat model of depression—25 years and still producing [J]. Pharmacol Rev, 2013, 65(1): 143-155.
[48] Overstreet DH. Modeling depression in animal models [J]. Methods Mol Biol, 2012, 829: 125-144.
[49] Nam H, Clinton SM, Jackson NL, et al. Learned helplessness and social avoidance in the Wistar-Kyoto rat [J]. Front Behav Neurosci, 2014, 8: 109.
[50] Jacobsen JP, Medvedev IO, Caron MG. The 5-HT deficiency theory of depression: perspectives from a naturalistic 5-HT deficiency model, the tryptophan hydroxylase 2Arg439Hisknockin mouse [J]. Philos Trans R Soc Lond B Biol Sci, 2012, 367(1601): 2444-2459.
[51] Tizabi Y, Hauser SR, Tyler KY, et al. Effects of nicotine on depressive-like behavior and hippocampal volume of female WKY rats [J]. Prog Neuropsychopharmacol Biol Psychiatry, 2010, 34(1): 62-69.
[52] Kyeremanteng C, James J, Mackay J, et al. A study of brain and serum brain-derived neurotrophic factor protein in Wistar and Wistar-Kyoto rat strains after electroconvulsive stimulus [J]. Pharmacopsychiatry, 2012, 45(6): 244-249.
Researchprogressonanimalmodelsofdepression
ZHANG Lei-yang, HE Min, LI Yue, QIU Fu-rong, CHEN Wen-wen, WU Yu, YANG Jiang-wei, JIANG Jian*
(Department of Clinical Pharmacology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China)
The incidence of depression has been increasing over the recent years, which can cause serious physical and mental health problems in humans, but its pathogenesis has not been fully clarified. Animal models can simulate the depression in humans, thus are widely used for studies of the pathogenesis of depression, as well as in research and development of new antidepressants. According to the different ways of modeling, animal models of depression can be divided into the following categories: stress models, surgical models, drug-induced models and genetic models. These models can provide useful tools to explain some pathogenetic aspects of depression, such as neurotransmitters and their receptors/transporters, neurotrophic factors, neuroendocrine systems, inflammatory hypotheses, and so on. This review summarizes and evaluates the commonly used rodent animal models of depression and provides a reference for further research on depression.
Depression; Rodent; Animal models; Pathogenesis
R-33
A
1671-7856(2017) 09-0092-06
10.3969.j.issn.1671-7856.2017.09.018
2016-12-27
上海市进一步加快中医药事业发展三年行动计划(编号:ZY3-CCCX-3-2007)。
张磊阳(1991-),女,硕士研究生,研究方向:中医郁证的临床及实验研究。E-mail: zlyash123@163.com
蒋健(1956-),男,博士,主任医师,博士生导师,研究方向:中医郁证的临床及基础研究。E-mail: jiangjiansg@126.com