甘蔗基因组多倍化研究进展

2017-01-13 16:44王俊刚赵婷婷杨本鹏王文治蔡文伟冯翠莲曾军熊国如张树珍
中国糖料 2017年5期
关键词:多倍体二倍体热带

王俊刚,赵婷婷,杨本鹏,王文治,蔡文伟,冯翠莲,曾军,熊国如,张树珍

(中国热带农业科学院热带生物技术研究所/中国热带农业科学院甘蔗研究中心/农业部热带作物生物学与遗传资源利用重点实验室,海南海口571101)

甘蔗基因组多倍化研究进展

王俊刚,赵婷婷,杨本鹏,王文治,蔡文伟,冯翠莲,曾军,熊国如,张树珍*

(中国热带农业科学院热带生物技术研究所/中国热带农业科学院甘蔗研究中心/农业部热带作物生物学与遗传资源利用重点实验室,海南海口571101)

主要介绍了甘蔗基因组起源、染色体组成,基因组多倍化遗传机制,基因组多倍化的优点:降低基因进化选择的压力、促进优良性状的固定、提高甘蔗的生物量及经济价值,以及多倍化育种的研究进展,为甘蔗多倍化育种提供理论参考。

甘蔗;基因组;多倍化;遗传进化;分子机理

甘蔗(Saccharum spp.)属于禾本科甘蔗属C4作物,其光饱和点高、二氧化碳补偿点低、光呼吸率低且光合强度大,是一年生的全球热带、亚热带经济作物[1-2]。甘蔗生产食糖占世界食糖消费的75%,占我国食糖消费的90%以上,甘蔗生产酒精达世界酒精总产量的40%。在漫长的进化过程中甘蔗由单倍体植物进化为多倍体植物,多倍化进程使得基因组加倍、等位基因数增加,形成新功能化、亚功能化的重复基因,增强了甘蔗的适应性[3]。对甘蔗基因组多倍化机制进行分析,有利于对其遗传组成、进化以及功能基因的解析。本文在总结前人研究的基础上,探讨了甘蔗多倍化的遗传效应,综述了多倍化形成的分子机理。

1 甘蔗基因组多倍化分析

1.1 甘蔗基因组组成

依染色体数量及基因组大小一般把甘蔗分为6类品种:热带种(S.officinarum)、割手密(S.spontaneum)、大茎野生种(S.robustum)、印度种(S.barberi)、中国种(S.sinense)、食穗种(S.edule)[4-6]。割手密(2n=40~128)和大茎野生种(2n=60或80,以2n=80为主)具有不同的染色体基数x=8与x=10,是野生原始种[7-9]。印度种(2n=81~120)、中国种(2n=111~124)、热带种(2n=80,x=10)、食穗种(2n=60~122)由人工驯化而成。热带种可能是由大茎野生种人工驯化而成[7,10-11];印度种和中国种可能是热带种和割手密杂交的后代[12-13];食穗种可能是热带种和大茎野生种的杂交后代[4,14]。

1.2 甘蔗基因组多倍化的进程

高粱是二倍体植物,基因组与甘蔗相似性非常高,八百万年前甘蔗与高粱具有共同的祖先[15-16]。随后甘蔗祖先由大茎野生种和割手密基因组的两次多倍化形成八倍体[8-9,17],大茎野生种和割手密品种分化可能发生在两百万年前。在多倍化及杂交过程中,不同的染色单体间可以发生配对重组形成嵌合体,基因组同源和异源复制以及种间杂交的复杂性,很难分辨甘蔗中的单个基因组,使甘蔗的基因组成为最为复杂的植物基因组

之一[2,18-19]。

1.3 甘蔗基因多倍化育种

现代甘蔗杂交育成的绝大部分品种的祖先为热带种、割手密种及印度种的原种,经过育种过程将割手密的抗性基因整合到热带种中,形成栽培种。而甘蔗杂交育种过程中存在母本恢复现象,热带种与割手密杂交过程中,母本二倍体配子起作用形成2n+n模式的F1,然后F1再和母本回交却以单倍体配子n+n模式遗传,经多次回交,快速恢复高糖性状,即高贵化育种,期间割手密染色体数逐渐减少,而有利的抗性基因得到保留。因此栽培种甘蔗中70%~80%的基因来自热带种、10%~20%的基因来自割手密、10%为重组基因[20-22]。但这样育成的甘蔗品种遗传背景狭窄,基因多样性少。我国甘蔗品种主要来自高贵化育成POJ2878的后代Co290、CP49-50、F134和Co419,这些都是甘蔗栽培种遗传背景狭窄的例证[23-24]。由于甘蔗品种间血缘关系近,遗传背景狭窄,品种易退化,甘蔗基因组的多倍化增强了其对环境的适应性,弥补了遗传方面的不足。

2 甘蔗基因组多倍化遗传机制研究

多倍化在动植物演化进程中起了重要作用,新表型产生与异源多倍化和同源多倍化都有关系。基因的复制初始时可能是功能冗余,但由于基因的重复减少了基因纯化的选择压力,因此基因复制为进化和新性状的产生提供了材料[25-27]。因而相对于多倍体生物的二倍体祖先,多倍体具有多套基因组遗传物质,有更佳的选择优势去适应环境的改变。此外,多倍体拓宽了遗传背景,使其遗传系统对生长发育以及对环境的响应具有更强的调控能力[28-29]。

2.1 多倍化与基因组

多倍体化对真核生物,尤其是植物基因组结构的进化起着重要的作用。已普遍被接受的观点认为,大部分的植物在二倍体后都有一至两轮的全基因组复制[30-32]。多倍体化和二倍体化循环过程形成目前稳定的二倍体和多倍体基因组。虽然多倍体优势的大部分分子机制仍不清楚,但比较明确的是多倍化过程中复制基因的功能分化产生了多倍体适应优势[33-34]。维管植物中多倍体现象很常见,种子植物都有多倍体祖先[35-36]。对植物基因组测序表明植物进化过程中经历多倍化事件,例如番木瓜和菠萝基因组经历过三倍化[37-38]。而甘蔗也经历全基因组复制,形成异源多倍体,造就其多倍体优势,形成基因组的剂量效应,促进甘蔗的进化[2,39-41]。

2.2 多倍化与基因组剂量

基因等位位点的差异是产生杂种优势现象原因之一,而等位基因的剂量决定了杂种优势程度[42-43]。在多倍化后,早期多倍体中可能会发生基因组剂量升高导致基因剂量失衡,进而可能改变基因的调控互作和基因网络[44-45]。当基因组的剂量效应对生物有益时,被复制的基因可以维持原有的功能或者和维持原来相似的功能[45-46]。与之相反时,复制的基因有可能演化出新的基因功能,或通过亚功能化部分继承祖先基因作用,或通过累积有害突变使其退败为假基因[47-48]。通过对一系列不同A、C基因组比例的甘蓝型油菜(基因型分别为AA、CC、AC、AAC、CCA、CCAA),采用RNA-Seq技术测定全基因组范围的基因表达量,分析结果表明约95%基因的表达量与剂量呈正相关,其中约60%在统计学上呈显著性(P<0.05),即为剂量效应;而剩余的相关性不显著,表现剂量补偿效应[46]。

2.3 多倍化与基因表达

在多倍化过程中部分基因会表现出加性表达和亲本显性表达。在比较新合成的和自然形成的异源四倍体棉花后发现,各亚基因组之间的表达差异水平也不同,在异源多倍体棉花中,D亚基因组的转录水平在花瓣、纤维、种子中都和A亚基因组存在明显的表达差异,只有少部分非加性表达基因是在多倍化过程中产生的,而大部分是在进化压力作用下逐渐形成的[26,49-51]。而在种间杂交F1群体中,A基因组表达优势高于二倍体杂交植株和自然生长异源多倍体植株,而在合成异源多倍体植株中变为劣势,这种偏向表达水平优势主要由“非优势”亲本同源物质的上调或下调引起,形成亲本显性表达[52]。而分析不同染色体组成的甘蔗亲本热带种、割手密种和大茎野生种中蔗糖合成酶、蔗糖转运蛋白和果糖激酶表达,各种基因在不同物种中的表达不一致,且它们单倍型也存在差异性,造就基因功能差异性[53-55]。这些结果表明,亲本显性表达和加性表达调控对多倍体后代性状变化具有很大影响,是多倍体优势产生的重要原因之一。

2.4 多倍化与microRNA

小分子RNA作为一种非编码RNA的产物以多种形式调控多倍体基因表达。microRNA对基因的表达调控不仅发生在转录水平上,也可发生在microRNA介导的转录后过程。它们调控mRNA的翻译、DNA甲基化和染色质重构。异源多倍体拟南芥中siRNA的表达更稳定,而miRNA和ta-siRNA的表达模式却与亲本差异显著[56]。而在合成异源四倍体子代中的24nt siRNA表达丰度变化明显,对DNA和染色质的修饰显著加强[57]。通过比较二倍体和多倍体水稻花粉发育过程中miRNA发现,在自交四倍体水稻中发现了与转座元件相关的24nt siRNA,然而,在二倍体水稻中它们显著下降,这表明24nt siRNA可能在花粉发育中起作用[58]。比较二倍体、三倍体、六倍体小麦中microRNA的表达,发现与转座子相关的siRNA表达随着倍性的升高而降低,表明小麦进化过程中杂交的加倍可能导致基因组的不稳定[59-60]。水稻osa-miR5788和osa-miR1432-5p_R+1在减数分裂中上调,其目标显示与减数分裂相关基因的相互作用,表明它们可能涉及与染色体行为相关的基因调控[58]。现代甘蔗品种的形成同样经历了一个多倍化的过程,不同倍性的材料在进行抗旱microRNA分析时,发现其有差异表达和特异性表达,其倍性和microRNA的关系还有待进一步的研究[61-64]。

综上所述,多倍化在植物进化过程中起着非常重要的作用,一方面维持基因组的稳定性,另一方面不断分化出新的基因以应对多变的环境压力,从而保证物种的生存和发展。

3 总结与展望

植物进化过程中频繁发生的多倍体化事件、自然界中多倍体植物的广泛分布以及大量具有优良农艺性状多倍体农作物的出现,使多倍化研究成为全世界关注的热点。甘蔗是典型的多倍体植物,其高生物量和高糖分是多倍化的结果。多倍化会导致甘蔗基因复杂性的增加,一个基因座上的多个等位基因提高了基因位点的变异潜力,而剂量平衡在这些变异中起着非常重要的作用,在维持基因组稳定性的同时,不断分化出新的基因以应对多变的环境压力,从而保证物种的生存优势。如何利用现有的其它物种的研究基础,解析甘蔗多倍体和杂种优势的分子机制,深入探索剂量平衡是如何调控基因表达以及引起相应的表型变化的遗传及表观遗传机理,不仅可以为甘蔗分子育种提供理论支持,也具有对多倍体研究的普通生物学意义。

[1]Heichel GH.Comparative efficiency of energy use in crop production comparative efficiency of energy use in crop production[J]. Bulletin Connecticut Agricultural Experiment Station,1974,739:1-26

[2]de Setta N,Monteiro-Vitorello CB,Metcalfe CJ,et al.Building the sugarcane genome for biotechnology and identifying evolutionary trends[J].BMC Genomics,2014,15(1):540

[3]Renny-Byfield S,Wendel JF.Doubling down on genomes:polyploidy and crop plants[J].Am J Bot,2014,101(10):1711-1725

[4]Daniels J,Roach BT.Taxonomy and evolution in sugarcane[M].In:Heinz DJ.(ed),Sugarcane improvement through breeding, Elsevier Press,Amsterdam,1987:7-84

[5]彭绍光.甘蔗育种学[M].北京:农业出版社,1990

[6]邓绍同.现代甘蔗栽培[M].广州:广东科技出版社,1992

[7]D’Hont A,LuP,Feldmann,JC,et al.Cytoplasmic diversity in sugarcane revealed by heterologous probes[J].Sugar Cane,1993,1:12-15

[8]Ha S,Moore PH,Heinz D,et al.Quantitative chromosome map of the polyploid Saccharum spontaneum by multicolor fluorescence in situ hybridization and imaging methods[J].Plant Mol Biol,1999,39(6):1165-1173

[9]Aitken KS,McNeil MD,Berkman PJ,et al.Comparative mapping in the Poaceae family reveals translocations in the complex polyploid genome of sugarcane[J].BMC Plant Biol,2014,14(1):190

[10]Brandes EW.Origin,dispersal and use in breeding of the Melanesian garden sugarcanes and their derivatives,Saccharum officinarum L.[J].Proc Int Soc Suagr Cane Technol,1956,9:709-750.

[11]Racedo J,Gutierrez L,Perera MF et al.Genome-wide association mapping of quantitative traits in a breeding population of sugarcane[J].BMC Plant Biol,2016,16(1):142

[12]Price S.Cytology of Chinese and North Indian sugarcanes[J].Economic Botany,1968,22(2):155-164

[13]D'Hont A,Paulet F,Glaszmann JC.Oligoclonal interspecific origin of'North Indian'and'Chinese'sugarcanes[J].Chromosome Res, 2002,10(3):253-262

[14]Huang Y,Wu J,Wang P,et al.Characterization of Chromosome Inheritance of the Intergeneric BC2 and BC3 Progeny between Saccharum spp.and Erianthus arundinaceus[J].PLoS One,2016,10(7):e0133722

[15]Jannoo N,Grivet L,Chantret N,et al.Orthologous comparison in a gene-rich region among grasses reveals stability in the sugarcane polyploid genome[J].Plant Journal,2007,50(4):574-585.

[16]Wang J,Roe B,Macmil S,et al.Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes[J].BMC Genomics,2010,11(1):261

[17]D’Hont A D,Ison K,Alix C,et al.Determination of basic chromosome numbers in the genus Saccharum by physical mapping of ribosomal RNA genes[J].Genome,1998,41(2):221-225.

[18]Piperidis G,D’Hont A.Chromosome composition analysis of various Saccharum inter-specific hybrids by genome in situ hybridization(GISH)[J].Proc.Int.Soc.Sugar Cane Technol,2011,11:565-566

[19]Cuadrado AR,Acevedo S,Moreno Dias de la Espina N,et al.Genome remodeling in three modern S.officinarum x S.spontaneum sugarcane cultivars[J].J.Exp.Bot,2004,55(398):847-854.

[20]Hoarau JY,Grivet L,Offmann B,Raboin LM,et al.Genetic dissection of a modern sugarcane cultivar(Saccharum spp.).II.Detection of QTLs for yield components[J].Theor Appl Genet,2002,105(6):1027-1037

[21]Ming R,Moore PH,Wu KK,et al.Sugarcane improvement through breeding and biotechnology[J].Plant Breeding Reviews,2006, 27:15-118.

[22]Nishiyama MYJ,Ferreira SS,Tang PZ,et al.Full-length enriched cDNA libraries and ORFeome analysis of sugarcane hybrid and ancestor genotypes[J].Plos One,2014,9(9):e107351.

[23]陈如凯,等.现代甘蔗育种的理论与实践[M].北京:中国农业出版社,2003

[24]Jackson PA.Breeding for improved sugar content in sugarcane[J].Field Crops Research,2005,92(2–3):277-290

[25]Prince VE,Pickett FB.Splitting pairs:the diverging fates of duplicated genes[J].Nature Reviews:Genetics,2002,3(11):827-837

[26]Flagel LE,Wendel JF.Evolutionary rate variation,genomic dominance and duplicate gene expression evolution during allotetraploid cotton speciation[J].New Phytol,2010,186(1):184–193

[27]Schinkel CC,Kirchheimer B,Dellinger AS,et al.Correlations of polyploidy and apomixis with elevation and associated environmental gradients in an alpine plant[J].AoB Plants,2016,8:1-16

[28]Rapp RA,Udall JA,Wendel JF.Genomic expression dominance in allopolyploids[J].BMC Biol,2009,7(1):18

[29Vlasova A,Capella-Gutierrez S,Rendon-Anaya M,et al.Genome and transcriptome analysis of the Mesoamerican common bean and the role of gene duplications in establishing tissue and temporal specialization of genes[J].Genome Biol,2016,17(1):32

[30]Comai L.The advantages and disadvantages of being polyploidy[J].Nat.Rev.Genet,2005,6(11):836-846.

[31]Jiao Y,Wickett NJ,Ayyampalayam S,et al.Ancestral polyploidy in seed plants and angiosperms[J].Nature,2011,473:97-100

[32]Jiao Y,Li J,Tang H,et al.Integrated syntenic and phylogenomic analyses reveal an ancient genome duplication in monocots[J]. Plant Cell,2014,26(7):2792-2802

[33]Anssour S,Krugel T,Sharbel TF,et al.Phenotypic,genetic and genomic consequences of natural and synthetic polyploidization of Nicotiana attenuata and Nicotiana obtusifolia[J].Ann Bot,2009,103(8):1207-1217

[34]Gao R,Wang H,Dong B,et al.Morphological,Genome and Gene Expression Changes in Newly Induced Autopolyploid Chrysanthemum lavandulifolium(Fisch.ex Trautv.)Makino[J].Int J Mol Sci,2016,17(10):1690

[35]Wood TE,Takebayashi N,Barker MS,et al.The frequency of polyploid speciation in vascular plants[J].Proc Natl Acad Sci USA,2009,106(33):13875-13879.

[36]McCarthy EW,Arnold SE,Chittka L,et al.The effect of polyploidy and hybridization on the evolution of floral colour in Nicotiana (Solanaceae)[J].Ann Bot,2015,115(7):1117-1131

[37]Ming R,Hou S,Feng Y,et al.The draft genome of the transgenic tropical fruit tree papaya(Carica papaya Linnaeus)[J].Nature, 2008,452(7190):991-996

[38]Ming R,VanBuren R,Wai CM,et al.The pineapple genome and the evolution of CAM photosynthesis[J].Nat Genet,2015,47(12): 1435-1442

[39]Zhang J,Arro J,Chen Y,et al.Haplotype analysis of sucrose synthase gene family in three Saccharum species[J].BMC Genomics, 2013,14(1):314

[40]Vanneste K,Baele G,Maere S,et al.Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous-Paleogene boundary[J].Genome Res,2014,24(8):1334-1347

[41]Niu S,Wang Y,Zhao Z,et al.Transcriptome and Degradome of microRNAs and Their Targets in Response to Drought Stress in the Plants of a Diploid and Its Autotetraploid Paulownia australis[J].PLoS One,2016,11(7):e0158750

[42]Birchler JA,Yao S,Chudalayandi D,et al.Heterosis[J].Plant Cell,2010,22(7):2105-2112

[43]Panchy N,Lehti-Shiu M,Shiu SH.Evolution of Gene Duplication in Plants[J].Plant Physiol,2016,171(4):2294-2316

[44]Veitia RA,Bottani S,Birchler JA.Cellular reactions to gene dosage imbalance:genomic,transcriptomic and proteomic effects[J]. Trends Genet,2008,24(8):390-397

[45]Birchler JA,Veitia RA.The Gene Balance Hypothesis:dosage effects in plants[J].Methods Mol Biol,2014,1112:25-32

[46]Tan C,Pan Q,Cui C,et al.Genome-Wide Gene/Genome Dosage Imbalance Regulates Gene Expressions in Synthetic Brassica napus and Derivatives(AC,AAC,CCA,CCAA)[J].Front Plant Sci,2016,7:1432

[47]Birchler JA.Interploidy hybridization barrier of endosperm as a dosage interaction[J].Frontiers in Plant Science,2014,5:281

[48]Henry IM,Zinkgraf MS,Groover AT,et al.System for Dosage-Based Functional Genomics in Poplar[J].Plant Cell,2015,27(9): 2370-2383

[49]Flagel L,Udall J,Nettleton D,et al.Duplicate gene expression in allopolyploid Gossypium reveals two temporally distinct phases of expression evolution[J].BMC Biol,2008,6(1):16

[50]Chaudhary B,Flagel L,Stupar RM,et al.Reciprocal silencing,transcriptional bias and functional divergence of homeologs in polyploid cotton(gossypium)[J].Genetics,2009,182(2):503-517

[51]Hu G,Houston NL,Pathak D,et al.Genomically biased accumulation of seed storage proteins in allopolyploid cotton[J].Genetics, 2011,189(3):1103-1115

[52]Yoo MJ,Szadkowski E,Wendel JF.Homoeolog expression bias and expression level dominance in allopolyploid cotton.Heredity (Edinb)[J],2013,110(2):171-180

[53]朱琳.甘蔗中蔗糖代谢途径关键基因和糖转运蛋白的系统发育研究[D].长春:吉林大学,2013

[54]Zhang Q,Li Y,Xu T,et al.The chromatin remodeler DDM1.promotes hybrid vigor by regulating salicylic acid metabolism[J]. Cell Discov,2016,2:16027

[55]Zhang Q,Hu W,Zhu F,et al.Structure,phylogeny,allelic haplotypes and expression of sucrose transporter gene families in Saccharum[J].BMC Genomics,2016,17(1):1-18

[56]Ha M,Lu J,Tian L,et al.Small RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids[J].Proc Natl Acad Sci USA,2009,106(42):17835-17840

[57]Ng DW,Lu J,Chen ZJ.Big roles for small RNAs in polyploidy,hybrid vigor,and hybrid incompatibility[J].Current Opinion in Plant Biology,2012,15(2):154-161.

[58]Li X,Shahid MQ,Wu J,et al.Comparative Small RNA Analysis of Pollen Development in Autotetraploid and Diploid Rice[J].Int J Mol Sci,2016,17(4):499

[59]Kenan-Eichler M,Leshkowitz D,Tal L,et al.Wheat hybridization and polyploidization results in deregulation of small RNAs[J]. Genetics,2011,188(2):263-272

[60]Gentile A,Dias LI,Mattos RS,et al.MicroRNAs and drought responses in sugarcane[J].Front Plant Sci,2015,6:58

[61]Ferreira TH,Gentile A,Vilela RD,et al.microRNAs associated with drought response in the bioenergy crop sugarcane (Saccharum spp.)[J].PLoS One,2012,7(10):e46703

[62]Gentile A,Ferreira TH,Mattos RS,et al.Effects of drought on the microtranscriptome of field-grown sugarcane plants[J].Planta, 2013,237(3):783-798

[63]Carnavale Bottino M,Rosario S,Grativol C,et al.High-throughput sequencing of small RNA transcriptome reveals salt stress regulated microRNAs in sugarcane[J].PLoS One,2013,8(3):e59423

[64]Khan MS,Khraiwesh B,Pugalenthi G,et al.Subtractive hybridization-mediated analysis of genes and in silico prediction of associated microRNAs under waterlogged conditions in sugarcane(Saccharum spp.)[J].FEBS Open Bio,2014,4(1):533-541

Research Progress of Sugarcane Genome Polyploidy

WANG Jun-gang,ZHAO Ting-ting,YANG Ben-peng,WANG Wen-zhi,CAI Wen-wei,FENG Cui-lian,
ZENG Jun,XIONG Guo-ru,ZHANG Shu-zhen*
(Institute of Tropical Biotechnology,Chinese Academy of Tropical Agricultural Sciences/Sugarcane Research Center of Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Genetic Resources of Tropical Crops,Ministry of Agriculture,Haikou 571101,Hainan)

The developments in the origin of sugarcane genome,chromosome composition,polyploidy genetic mechanism and breeding were summarized.The advantages of genome polyploidy were as follows:it reduced the gene selective pressure,accelerated the excellent traits fixation and improved biomass and economic value of sugarcane,in addition,it would provide theoretical basis for sugarcane polyploidy breeding.

sugarcane;genome;polyploidy;genetic evolution;molecular mechanism

S566.103

B

1007-2624(2017)05-0041-04

10.13570/j.cnki.scc.2017.05.015

2017-04-05

“863”计划(2013AA102604-1);中央级公益性科研院所基本科研业务费(ITBB2015RC04,ITBB2015ZY12);海南省自然科学基金(20163124)。

王俊刚(1982-),博士研究生,助理研究员,研究方向:甘蔗生物技术,E-mail:wangjungang@itbb.org.cn。

张树珍(1965-),博士,研究员,博士生导师,主要从事甘蔗生物学的研究,E-mail:zhangsz2007@163.com。

猜你喜欢
多倍体二倍体热带
药用植物多倍体育种研究进展
“富硒多倍体蒲公英新品系”在太谷区试种成功
肝细胞多倍体发生机制及其与肝细胞癌形成的相关性研究进展
热带风情
热带的鸟儿
T 台热带风情秀
染色体加倍对黄毛草莓叶片形态的影响
二倍体太子参丛生芽诱导研究
热带小鸟
二倍体与四倍体金银花减数分裂观察