朱昌洪
摘 要: 由于传统功能测试系统对汽车电子ECU进行测试时存在偏差高和稳定性差的缺陷。因此,提出基于PXI的汽车电子ECU功能测试系统,该系统由PXI总线、电子监控测试模块、万用表和计算机组成。PXI总线对汽车电子ECU进行数据的采集与初始化测试,并将数据传输给电子监控测试模块。电子监控测试模块由控制器、供电模块、检测模块、信号收发器和开关控制器组成。供电模块为电子监控模块供电,检测模块将检测出的故障数据传递给信号收发器进行信号转变。开关控制器通过分析故障信号进行电路的转换或切断操作。控制器管控着整个电子监控测试模块的运行流程,并将筛选后的数据传输给万用表。万用表对接收到的数据信号电压进行放大并传递至计算机。软件设计部分,给出PXI汽车电子ECU功能测试系统的测试流程及其故障的排除算法。实验结果表明所设计系统拥有较高的准确性和稳定性。
关键词: PXI; 汽车; ECU; 测试
中图分类号: TN948.2?34; TB47 文献标识码: A 文章编号: 1004?373X(2016)22?0129?0
0 引 言
近十年来,汽车电子ECU以其舒适性、经济性和娱乐性作为诱惑因素,其全国装载率[1?4]已高达80%。为保证汽车行驶的安全稳定,庞大的汽车电子ECU市场对其产品的功能测试提出了较高的要求[5?6]。由于传统功能测试系统对汽车电子ECU进行测试中存在偏差高和稳定性差的缺陷。因此,构建准确性和稳定性较高的汽车电子ECU功能测试系统,已成为目前国际汽车组织协会研究的重要项目。
以往研究的汽车电子ECU功能测试系统均存在一定的缺陷,如文献[7]提出虚拟汽车电子ECU功能测试系统,利用计算机模拟汽车行驶过程中的各种障碍,进而对汽车电子ECU进行测试和故障排除,但这种测试系统无法应用于特定环境,且准确度和故障排除率较低。文献[8]提出DSPACE汽车电子ECU仿真测试系统,其拥有性能优越的硬件以及完善的仿真软件,可对汽车电子ECU进行完美测试,但这种测试系统价格昂贵,且在实际运用中汽车电子ECU无需进行如此复杂的测试,因此推广率较低。文献[9]提出基于N1硬件平台的汽车电子ECU功能测试系统,该系统以HIL作为理论依据进行汽车电子ECU的网络和功能测试,但这种系统的检测流程较为复杂,效率低下。
为了解决以上问题,提出了基于PXI的汽车电子ECU功能测试系统,在PXI总线上添加适合的测试电路和设备,构建功能完善的汽车电子ECU功能测试系统。实验结果表明,所设计的汽车电子ECU功能测试系统拥有较高的准确性和稳定性。
1 基于PXI的汽车电子ECU功能测试系统
1.1 系统总体结构设计
PXI汽车电子ECU功能测试系统由PXI总线模块、电子监控测试模块、万用表和计算机组成,其结构图如图1所示。PXI总线对汽车电子ECU进行数据的采集与初始化测试,并将数据传输于电子监控测试模块。电子监控测试模块将采集数据进行筛选和信号放大,并管控着电路的转换和切断操作。万用表可对筛选出的数据信号电压进行放大,并将数据信号电压传递至计算机进行分析和控制。
1.2 PXI总线模块设计
PXI总线模块是PXI汽车电子ECU功能测试系统的核心模块,其主要功能是对汽车电子ECU系统进行数据的采集、测试与传输。PXI总线模块由扩展卡、数控二极管、转换卡和PXI拓展器组成,图2为PXI总线电路原理图。
由图2可知,PXI总线模块工作流程为:将需要进行测试的汽车电子ECU与PXI总线模块中的扩展卡相连,利用扩展卡进行汽车电子ECU的数据采集与存储。因扩展卡所需数据类型较为特殊,故二者在进行数据的传输前需要进行数据的协议转换。采用某公司设计的MXI?4转换芯片,无需进行复杂的算法编制便可实现数据的协议转换。
扩展卡拥有极高的存储容量和防丢失性能,可进行数据协议的大量存储。数控二极管是一种拥有两个电极的电路元件,其在工作状态下只允许电流从单一方向通过,并且能够进行电流值的显示。通过将扩展卡与数控二极管相连接,可防止系统在不稳定的情况下电流逆流形成的数据乱码,也能够实时监测电路中的电流值,防止电路元件损伤。
由于经由MXI?4转换芯片转换后的协议数据不能被PXI汽车电子ECU功能测试系统的其他模块所识别,故在PXI总线模块中安置转换卡。转换卡能够将协议数据转换为标准的电气规范数据,并将其传输于PXI拓展器。由于汽车电子ECU在故障状态下工作时的数据波动较大,且标准范围并不惟一,故PXI拓展器会对传输来的数据进行初始化测试,将符合规定范围附近的数据全部留用,再将测试数据传输于电子监控测试模块进行进一步的分析。
1.3 电子监控测试模块设计
电子监控测试模块能够实现数据的传输、汽车电子ECU故障的判定与锁定以及监控单元的自我检修等功能,可对电源故障、信号故障、转速故障和存储故障等进行实时监测。该模块可以对温度范围为[-45 ℃,90 ℃]、用电电压范围为[DC 13 V,DC 15 V]的汽车电子ECU进行功能测试,测量范围较大,可完美满足市场需求,图3是电子监控测试模块基础结构图。
由图3可知,电子监控测试模块由控制器、供电模块、检测模块、信号收发器和开关控制器组成。
控制器是电子监控测试模块的核心组成部分,管控着模块中供电系统、检测系统和信号收发器的运行流程,一旦发现以上运行流程出现本末倒置或不正常停止的情况,控制器会对电子监控模块进行初始化操作,以保证PXI汽车电子ECU功能测试系统的正常运行及其所测数据的准确性。
供电模块可自动为电子监控模块供给能量,其中包含2个直流电源与2个交流电源,能够满足绝大部分汽车电子ECU的检测用电需求。
检测模块不仅能够快速检测出数据中蕴含的汽车电子ECU故障,也能够及时发现电路中电源和接点产生的故障,为PXI汽车电子ECU功能测试系统的持续工作提供了保障,检测模块将检测到的故障信息数据传递给信号收发器。
信号收发器能够将故障信息数据转变成各种类型的可视化数据信号(包括正弦信号、三角信号、脉冲信号等),方便开关控制器进行数据的解析。由于不同数据呈现出的可视化类型不同,而不同可视化类型所需转换的电路也不同,当解析电路出现故障时,也需要进行电路的切断操作,故加入开关控制器这一元件进行控制。开关控制器接收到信号收发器传输过来的数据后,需要对数据进行分类解析,并给出是否关闭、开启电路开关的指令,以进行PXI汽车电子ECU功能测试系统电路的准确转换。采用某公司生产的4P?600M开关控制器,该开关控制器能够识别出的信号范围较广,最大开关电流为8 A,最大开关电压为250 V和DC 40 V,短路电阻值为15 Ω。4P?600M开关控制器内部拥有一个双向型电源,通过对该电源的隔离或者正负极的对调,进而实现电路的转换和切断。由于信号收发器无法进行数据的输出操作,故电路转换或切断工作运行完毕后,信号收发器会自动开始搜寻开关控制器数据,并将数据传递给控制器。最后,控制器将电子监控测试模块筛选后的数据传输给万用表。
1.4 万用表设计
由于电子监控测试模块输出数据的信号电压范围是[-10 V,10 V],而汽车电子ECU供电电压一般为15 V,需要将输出数据的信号电压进行放大才能够被PXI汽车电子ECU功能测试系统所使用,因此在系统电路中引入万用表这一元件。选用某公司设计的KEW1019R万用表,该万用表具有自动充放电能力,可在电源故障的情况下连续正常工作180 h,且准确度高、显示清晰、过载能力强,图4是KEW1019R万用表连接电路图。
分析图4可知,万用表不仅可以对数据的信号电压进行放大,也可检测PXI汽车电子ECU功能测试系统中各电路元件(包括电阻、电容、电感等)的工作性能,便于第一时间对损坏或不符合系统电路需求的元件进行更换,令所获取到的汽车电子EUC测量数据更加精准。在电路中加入了缓冲器,这是为了防止万用表突然输出过大的放大电压损坏电路其他元件。放大后的电压被传输于计算机进行进一步处理。
2 系统软件设计
利用LabVIEW软件对PXI汽车电子ECU功能测试系统进行编程。LabVIEW软件拥有巨大的编程数据库,包含数据采集、数据分析、通用接口总线、设置断点、单步执行、数据显示和数据存储等,为程序的调试提供了便利。系统的测试流程为:首先读取PXI汽车电子ECU功能测试系统的配置文件,为整个系统的初始化工作做好准备。配置文件主要有:统计过程控制、系统配件类型、极限文件和主机配置类型等。系统初始化后便可以开始数据的采集与筛选工作,测试流程启动后,当采集的数据不符合事先设定的电气规范标准值时,系统将进行不间断的数据采集,采集和筛选工作同时进行,采集的数据量达到一定数值后,测试工作开始。当检测出汽车电子ECU具有某项故障时,则自动将此故障输出并保存至计算机中。循环进行数据的采集、筛选和检测工作,直至将所有故障数据存储完毕。图5为系统测试流程图。
%循环测试并存储结果
3 实验分析
为验证所设计的PIX汽车电子ECU功能测试系统的准确性和稳定性,实验在装有某汽车电子ECU的汽车上分别进行虚拟汽车电子ECU功能测试和PIX汽车电子ECU功能测试,现假设两辆汽车的行驶初始速率和加速度均相同,分别记录两辆汽车的位移、实时速度和系统给出指令的时间,经分析后绘制出曲线图。
图6、图7分别为虚拟汽车电子ECU功能测试系统准确性和本文功能测试系统准确性。
可以看出,虚拟汽车电子ECU功能测试系统准确度曲线较为杂乱,且平均准确度仅为55%,无法对汽车电子ECU进行准确测试,对汽车的行驶安全造成了一定影响;而本文测试系统的准确度曲线较为平稳,平均测试准确度较高,为80%,验证了PXI汽车电子ECU功能测试系统的准确性。
图8、图9分别为虚拟汽车电子ECU功能测试系统故障排除曲线和本文功能测试系统故障排除曲线。通过分析两个功能测试系统的故障排除率即可确定二者稳定性能的优劣情况。
由图8、图9可知,虚拟汽车电子ECU功能测试系统在下达指令的初期故障排除率较高,但曲线整体呈大幅度下降趋势,即系统稳定性较低;而本文测试系统的故障排除曲线较为稳定,故障排除率的最大值和最小值分别为99%和83%,故障排除率整体较高且波动较小,验证了PXI汽车电子ECU功能测试系统的稳定性。
4 结 论
本文提出基于PXI的汽车电子ECU功能测试系统,该系统由PXI总线、电子监控测试模块、万用表和计算机组成。PXI总线对汽车电子ECU进行数据的采集与初始化测试,并将数据传输给电子监控测试模块。电子监控测试模块由控制器、供电系统、检测系统、信号收发器和开关控制器组成。供电系统为电子监控模块供电,检测系统将检测出的故障数据传递给信号收发器进行信号转变。开关控制器通过分析故障信号进行电路的转换或切断操作。控制器管控着整个电子监控测试模块的运行流程,并将筛选后数据传输给万用表。万用表对接收到的数据信号电压进行放大并传递至计算机。软件设计部分,给出了PXI汽车电子ECU功能测试系统的测试流程及其故障的排除算法。实验结果表明,所设计的PXI汽车电子ECU功能测试系统拥有较高的准确性和稳定性。
参考文献
[1] 霍淑珍.基于PXI系统的汽车电控类产品测试系统设计[J].机电产品开发与创新,2015,28(5):107?109.
[2] 莫太平,蔡习文,张明志.汽车ECU测试系统的研究与实现[J].自动化与仪表,2014,29(7):35?38.
[3] 李智,龚元明.无线传感器网络的汽车ECU数据交互模块研究[J].单片机与嵌入式系统应用,2015,15(12):46?49.
[4] 刘耀锋,邬昌盛.基于RTW的C代码生成及其在汽车ECU开发中的应用[J].机电一体化,2014,20(3):41?45.
[5] 任国峰,田丰,杨林.发动机控制器ECU中功率管的温度预测研究[J].湖南大学学报(自然科学版),2014,41(5):8?13.
[6] 张洪财,胡泽春,宋永华,等.考虑时空分布的电动汽车充电负荷预测方法[J].电力系统自动化,2014,38(1):13?20.
[7] 韩文忠.论汽车电控发动机常见故障排除与维修[J].现代商贸工业,2014,19(7):193?194.
[8] 徐智威,胡泽春,宋永华,等.基于动态分时电价的电动汽车充电站有序充电策略[J].中国电机工程学报,2014,34(22):3638?3646.
[9] 刘柏良,黄学良,李军,等.含分布式电源及电动汽车充电站的配电网多目标规划研究[J].电网技术,2015,39(2):450?456.