环境中黑碳来源解析方法研究进展

2016-12-19 03:42占长林万的军张家泉韩永明曹军骥刘先利
生态环境学报 2016年9期
关键词:来源化石生物质

占长林,万的军,张家泉,韩永明,曹军骥,刘先利

1. 湖北理工学院环境科学与工程学院//矿区环境污染控制与修复湖北省重点实验室,湖北 黄石 435003;2. 中国科学院地球环境研究所//黄土与第四纪地质国家重点实验室,陕西 西安 710061;3. 中国地质科学院水文地质环境地质研究所,河北 石家庄 050061;4. 西安交通大学全球环境变化研究院,陕西 西安 710049

环境中黑碳来源解析方法研究进展

占长林1,2*,万的军3,张家泉1,韩永明2,4,曹军骥2,4,刘先利1,2

1. 湖北理工学院环境科学与工程学院//矿区环境污染控制与修复湖北省重点实验室,湖北 黄石 435003;2. 中国科学院地球环境研究所//黄土与第四纪地质国家重点实验室,陕西 西安 710061;3. 中国地质科学院水文地质环境地质研究所,河北 石家庄 050061;4. 西安交通大学全球环境变化研究院,陕西 西安 710049

黑碳是燃料不完全燃烧过程中形成的一种特殊的非均质碳颗粒物质,因其具有较高的化学和生物惰性,在全球气候和环境系统中具有重要意义,是当前国际地球和环境科学领域的焦点问题。燃烧条件和燃料来源的不同,使得黑碳的物理化学特性表现出高度的变异,其环境行为及环境效应也具有明显差异,因此对黑碳进行来源解析有利于弄清全球黑碳收支平衡,且能更清晰地认识其在不同环境介质中的迁移转化过程。重点概述了当前国内外常用的几种黑碳来源解析方法及其应用的研究进展;同时提出了未来黑碳来源解析方法的发展方向。稳定碳和放射性碳同位素分析是当前黑碳源解析中应用最多的两种方法,将这两种方法结合不仅能提供更准确的黑碳来源信息,而且能定量估算化石源和生物质源燃烧对黑碳的贡献。多环芳烃特征标志物比值、黑碳/有机碳比值、苯多羧酸分子标志物比值法以及形态特征分析的方法都只能间接地判断黑碳的来源,其方法的应用有一定的局限性和不确定性。未来应加强对不同介质中δ13C的分馏机制及不同排放源样品黑碳的δ13C和14C值域“特征谱”的研究,进一步规范黑碳的分离和测定技术;同时应充分发挥不同分析技术的优势,联合多种方法以获取更多有关黑碳来源、传输和转化过程的信息。

黑碳;来源解析;碳同位素;比值

黑碳(black carbon,BC)是生物质和化石燃料等不完全燃烧(Goldberg,1985;Schmidt et al.,2000)或岩石风化(Dickens et al.,2004)产生的含碳物质连续统一体,包括部分炭化的生物质、焦炭(char)、木炭(charcoal)、烟炱(soot)和石墨态黑碳(graphite BC)(Hedges et al.,2000;Masiello,2004)。由于其具有特殊的理化性质,在不同环境介质中,黑碳的地球化学行为及环境效应存在一定的差异。土壤环境中的黑碳可以改良土壤肥力(Atkinson et al.,2010;Laird et al.,2010;Liang et al.,2006),储存大气碳素,减缓温室效应(Gurwick et al.,2013;Lehmann,2007;Whitman et al.,2010),同时可对土壤中有机污染物及重金属的迁移转化产生重要影响(Gomez-Eyles et al.,2011;Lucchini et al.,2014;Yavari et al.,2015)。大气中的黑碳能大量吸收太阳辐射,引起增温效应,同时对区域和全球气候产生较大的影响(Bond et al.,2013;McConnell et al.,2007;Menon et al.,2002;Ramanathan et al.,2008)。冰雪中的黑碳能通过改变冰雪反照率而影响气候(Hansen et al.,2004;Ming et al.,2009),进而加速冰川消融(Xu et al.,2009)。沉积物中的黑碳可以用来重建地质时期的火灾事件和植被演化历史(Bird et al.,1998;Han et al.,2016a;Lehndorff et al.,2015b;Wang et al.,2013;Wang et al.,2005;Whitlock et al.,2006),也能反映人类活动过程(Bisiaux et al.,2012;Han et al.,2015b;Han et al.,2016b)。黑碳是陆地土壤、海洋沉积物及水体有机碳(Organic carbon,OC)的重要组成,在全球碳的生物地球化学循环中也扮演着重要的角色,因此越来越受到科学界的广泛关注。

近年来,随着工业化和城市化进程的加快,来自工业、交通、农业等领域的化石燃料燃烧、垃圾和秸秆焚烧等人为活动已经显著地改变了全球碳循环,最直接的表现是温室气体和黑碳颗粒物的大量排放(Kuhlbusch,1998)。因燃烧温度不同,不同燃料燃烧生成的黑碳理化性质也存在较大的差异,因此它们在环境中的存留时间也不尽相同(Masiello,2004)202-203。例如,机动车和化石燃料高温燃烧排放的黑碳颗粒物进入大气中形成碳气溶胶,不仅影响大气组成和大气化学过程,还能影响云的形成和区域气候(Bond et al.,20135384-5385;Ramanathan et al.,2008221-221),进而影响农作物的产量(Tie et al.,2016);而且这些黑碳粒子吸附着大量有毒有害物质,可通过呼吸作用进入人体并可能长期滞留,严重危害人体健康(Jansen et al.,2005)。而生物质燃烧以后的黑碳残留物进入土壤中,成为重要的土壤改良剂,可以提升土壤肥力,减少养分流失,增加作物产量,修复受污染的土壤环境;还能减少土壤温室气体的排放,对全球气候变化和热辐射平衡具有积极的影响(Beesley et al.,2011;Lehmann et al.,2009;Singh et al.,2012;Sohi,2012)。这些不同来源黑碳在土壤有机碳库中的比重会直接影响区域和全球碳的生物地球化学循环,而且通过黑碳来源解析有利于厘清全球黑碳收支平衡以及更清晰地认识其环境迁移转化过程。因此,对不同来源黑碳的区分就显得尤为重要。

考虑到黑碳的新鲜程度和运输方式,一旦黑碳进入土壤,由于氧化过程和累积过程可能会影响黑碳来源解析的准确性,因此通过某种单一方法进行黑碳来源解析,结果不一定可靠。那么,如何实现定性和定量地解析黑碳的来源呢?本文将重点概述目前黑碳来源解析方法的研究进展及应用不同方法时可能存在的问题,也指出了未来环境中黑碳来源解析方法的发展趋势。

1 黑碳来源解析方法

1.1 稳定碳同位素分析

稳定碳同位素组成可以用来追踪BC来源的主要依据是C3和C4植物的δ13C值的变化范围分别在-20‰~-32‰和-9‰~-17‰之间(Denies,1980)。不同来源BC的δ13C值存在一定差异(Bird et al.,2012;Kawashima et al.,2012;López-Veneroni,2009;陈颖军等,2012)(见表1),因此利用δ13C化学指纹特征可以对不同来源的BC进行解析。

Cao et al.(2011)对我国14个城市大气PM2.5中BC和OC的δ13C进行了分析,证实民用燃煤是北方城市冬季大气中 BC的重要来源。José et al.(2015)通过对伊比利亚半岛西南部Guadiana河表层沉积物中BC的δ13C进行了分析,结果表明化石燃料及C3植物燃烧是BC的主要来源,而岩石风化源BC可以忽略不计。陈衍婷等(2012)对厦门近海沉积物中BC的δ13C的分析结果显示化石燃料燃烧的信息不太明显,但是SEM观察到的BC颗粒物形貌特征证实化石燃料燃烧对BC也有一定贡献。研究表明,生物燃料和民用煤燃烧产生的烟尘中的δ13C对其原始燃料的δ13Cfuel有较好的继承性,可以较好地区分其来源;而机动车尾气烟尘的δ13C值存在一定的区域性差异,而且受到机动车功率的影响(陈颖军等,2012)674-675。考虑到不同燃料类型及燃烧温度对碳同位素分馏的影响(Bird et al.,1997;Das et al.,2010;Hall et al.,2008;Krull et al.,2003),在来源解析时一定要特别注意多方面因素的影响。例如,Bird et al.(1997)3417-3419研究发现,植物燃料在500 ℃下热解2 h以后,其δ13C值会进一步贫化,偏负0‰~ 1.6‰。也有人指出,虽然δ13C方法可以用来区分BC的来源,但是它们之间并没有直接的联系,而且在大多数情况下,一定环境背景下的 δ13CBC值会使得 C4植物的贡献被低估(Bird et al.,2015)。由于碳同位素分馏受到多种因素的影响,而且过程复杂,因此在一定程度上也限制了该方法在BC来源解析中的应用。

表1 不同排放源样品的δ13CBC值Table 1 δ13C values of BC in different emissions sources

1.2 放射性碳同位素分析

生物质和化石燃料燃烧产生的BC在理化性质及放射性碳特性上存在较大的差异,因此可以研究过去及现在的燃烧活动、陆地火灾历史及大气颗粒物的源解析。化石燃料(煤、石油、天然气等)由于形成时间远大于14C的半衰期(5730年),因此化石燃料燃烧所排放的BC不存在14C(Reddy et al.,2002;曹芳等,2015)。而现代生物质通过与大气 CO2中的碳元素进行交换,因此生物质源燃烧排放BC中的14C与现代大气中的14C含量非常接近(张世春等,2013)。因此,通过对环境介质中BC的14C相对含量的测定可以进一步区分BC的生物质源和化石源。

目前,已经有大量研究利用放射性14C解析大气气溶胶中元素碳(EC,也称黑碳)的来源(Budhavant et al.,2015;Chen et al.,2013;Gustafsson et al.,2009;Zhang et al.,2014)。例如,Zhang et al.(2014)2655-2656通过对海南尖峰岭大气PM2.5持续1年的观测,碳气溶胶14C解析结果表明化石源对EC的平均贡献率为(38%±11%)。Budhavant et al.(2015)4-5分别对马尔代夫大气观测站(MCOH)和印度热带气象研究所监测站(SINH)黑碳气溶胶14C进行分析,结果发现大气污染严重的冬季,在MCOH和SINH站点生物质燃烧对EC的贡献率分别为(53%±5%)和(56%±3%);而在其他季节,两个不同站点生物质燃烧对 EC的贡献率分别为(53%±11%)和(48%±8%)。Liu et al.(2013)结合左旋葡聚糖以及14C测定结果,报道了2009年7月—2010年3月期间宁波大气PM2.5中化石燃料燃烧源对EC的贡献率为78%。

一些研究也将14C技术用于雪冰(Jenk et al.,2006)、沉积物(Chang et al.,2008)和土壤(Lehndorff et al.,2015a)中BC的源解析。例如,Chang et al.(2008)利用加速器质谱技术分析了韩国 3个岩溶洞中洞穴沉积物表面上BC的14C,结果显示BC主要来源于化石燃料和生物质燃烧,且两者的贡献基本相同。Lehndorff et al.(2015a)通过对德国哈雷市耕地土壤中分子标志物BPCAs组分进行14C分析,结果显示化石燃料燃烧排放BC对土壤中全部BC及OC的贡献分别为75%和15%。

还有一些研究将14C与13C同位素相结合对黑碳气溶胶进行来源定量解析,该方法能提供更准确和更完善的来源信息,并进一步减小BC源解析的不确定性。Gustafsson et al.(2009)研究发现,14C与13C双同位素分析比单纯用14C技术更能证明生物源(生物质、生物燃料等)对元素碳排放的较大贡献,并且表明除其他C3植物及木材以外,C4植物(如玉米秸秆)也是BC的重要排放源。Winiger et al.(2015)采用14C与13C同位素法对挪威斯瓦尔巴得群岛地区2009年1—3月期间14次大气重污染事件进行研究,结果显示其中 12次污染事件生物质对元素碳的平均贡献为(52%±15%),其余2次污染事件生物质燃烧对元素碳贡献达到(57%±21%)。Ceburnis et al.(2011)采用14C与13C联合分析方法研究了大西洋东北部海洋气溶胶的来源贡献,发现海洋生物源气溶胶对细颗粒物(D50<1.5 µm)的贡献达到80%,剩余的碳气溶胶来源于陆地;从欧洲传输到东北大西洋地区的污染大气的来源包括海洋生物源(30%)、化石燃料燃烧源(40%)和陆地非化石燃料燃烧源(30%)。

要想将14C分析技术应用于不同环境介质中BC的来源解析,关键问题是如何实现碳的分离及制样。由于14C方法对样品需求量大且测试费用高,目前国内对这一方面的研究还相对较少。

1.3 PAHs特征标志物比值分析

燃料燃烧过程中会同时产生 BC与多环芳烃(PAHs),再加上BC对同源PAHs有很强的吸附性,因此PAHs来源解析的结果也可以用来分析BC的来源(Shrestha et al.,2010;汪青,2012),特别是高浓缩黑碳的来源分析(Han et al.,2015a)。Mitra et al.(2002)根据密西西比河悬浮泥沙中高分子量PAHs异构体之间的比值(B[a]A/Chry、B[b]F/B[k]F、B[a]P/B[e]P)来估算进入海洋的燃烧源BC的贡献,分析得出密西西比河排放的BC中约27%来自化石燃料(煤及冶炼)燃烧。Wang et al.(2014)根据几种 PAHs异构体比值(Fl/Py、B[a]A/Chry和InP/B[ghi]P)结合主成分分析法得知上海市土壤中的BC主要有两大来源:生物质和煤燃烧以及机动车排放(油类燃烧及轮胎磨损)。表2所示是不同燃烧排放源中高分子量PAHs同分异构体的比值。通过这些比值可以进一步深入地研究与BC排放、沉积及气候变化有关的燃烧事件及人为活动对环境的影响(Han et al.,2016b)3-5。然而在实际应用中,可能还得考虑到燃料产地、燃烧温度、燃烧设备、燃烧效率等差异对PAHs同分异构体比值的影响。

表2 不同燃烧排放源中高分子量PAHs同分异构体比值(Mitra et al., 20022300-2302;Muri et al.,2002;Wang et al.,201441-42)Table 2 High molecular weight polycyclic aromatic hydrocarbons isomer ratios in different combustion sources

1.4 黑碳/有机碳比值

BC是有机碳的重要组成部分,因此有学者认为BC/OC比值可以反映人为活动的影响及污染程度(Gustafsson et al.,1998;Muri et al.,20021230-1231;Novakov et al.,2000)。根据大气气溶胶研究结果,如果BC/OC比值为0.11±0.03,说明黑碳主要来源于生物质燃烧;如果为0.5±0.05,则说明黑碳主要来源于化石燃料燃烧(Novakov et al.,2000)4062-4064。何跃等(2006,2007)将上述 BC/OC比值应用于南京城区土壤中黑碳的来源分析。随后,又有一些学者通过BC/OC比值对诸如北京(Liu et al.,2011)、上海(Wang et al.,2014;徐福银等,2014)等城市,杉木林(尹云锋等,2009)土壤中黑碳的来源进行了分析。这些结果显示BC/OC比值可以在一定程度上判断黑碳的主要来源。然而,Schmidt et al.(1999)研究发现,德国黑钙土中BC/OC比值高达0.45以上,如此高含量的黑碳被认为主要来源于天然火,而并非来源于化石燃料的燃烧。BC碳同位素分析结果也证实了上述结论(Schmidt et al.,2002)。由此可见,通过BC/OC比值法得到的关于土壤黑碳来源的结论并不一定可靠。因为BC/OC比值的大小与燃料种类和燃烧条件等因素有关,而且OC在自然环境中还要经历化学及生物反应,这使得该方法的应用有一定局限性。因此,在实际应用中最好能结合其它源解析方法进行综合对比分析。

1.5 焦炭/烟炱比值

2007年,Han et al.(2007)通过多种不同标准样品的对比实验研究,首次提出热光反射法可以将BC中的焦炭和烟炱信号进行分离,并对两种不同类型的BC进行测量。该方法的提出也为研究BC化学特征和行为提供了新的视角和思路。有关焦碳与烟炱区分方法也被成功应用于湖泊沉积物(Cong et al.,2013;Han et al.,2012;Han et al.,2016a;Han et al.,2015b;Han et al.,2016b;Han et al., 2011)、土壤(Zhan et al.,2015)、降尘(Han et al.,2009a;Zhan et al.,2016)和现代气溶胶(Han et al.,2010;Han et al.,2008;Han et al.,2009b;Kim et al.,2011;Lim et al.,2012)研究中。

由于焦炭与烟炱的生成温度不同,因此不同燃料在不同燃烧温度下所产生的char/soot比值存在较大差异。根据前人的研究,生物质燃烧的char/soot比值较高,煤燃烧排放居中,而机动车排放较小(Chen et al.,2007;Chow et al.,2004)。Chow et al.(2004)的研究结果显示生物质燃烧的 char/soot比值为22.6,明显大于机动车排放(0.60)。而Cao et al.(2005)在西安地区的研究发现,char/soot比值为1.9指示煤燃烧,比值为11.6指示生物质燃烧。Han et al.(2009a)研究发现,西安市道路尘中char/soot比值为1.66,认为BC主要来源于煤和机动车排放;而较高的char/soot比值(大于2.6)则主要与郊区农田的露天燃烧和居民薪柴燃烧有关。需要特别注意的是,任何环境介质中化石燃料和生物质燃烧排放的char/soot比值是混合在一起的,它们之间并没有明显的界限(Han et al.,2010),这也给BC的来源解析带来一定困难和不确定性。因此,如果要对BC的来源进行更准确地区分,就要借助其他的一些更先进的测试分析手段,例如放射性碳同位素(14C)分析,来获取有关BC来源的更准确的信息。

1.6 形态特征分析

图1 焦炭(木炭)(Brodowski et al.,2005a)与烟炱(Buseck et al.,2012)的SEM外观形貌特征Fig. 1 SEM images of char (charcoal) and soot

化石燃料和生物质不完全燃烧过程中,因燃烧温度不同,产生BC的类型也存在较大的差异。主要包括两种类型:燃烧残留物——焦炭/木炭(char或charcoal)和气-粒转化形成的浓缩态烟炱(soot)(Han et al.,2010)。焦炭/木炭主要为生物质不完全燃烧的产物,保留原始燃料的结构特征(如细胞和纤维结构)(Accardi-Dey,2003),一般呈不规则的形状或长条形,粒径范围较大,从几微米到几厘米(图 1a)。而烟炱主要来源于化石燃料和生物质燃烧,芳香程度较高(Masiello,2004)202-203,一般由大量碳质小球(粒径约15~50 nm)聚合而成,有很大的比表面积,形貌上多为团簇状、链状或树枝状结构(图1b)。焦炭/木炭一般在土壤和沉积物中有较多发现,因为这些颗粒粒径相对较大,一般沉降在火源地附近(Whitlock et al.,2002),所以地质记录中常根据焦炭/木炭的外观形貌来推测过去的火灾及植被演化历史(Sümegi et al.,2001;Scott,2010;Thevenon et al.,2007)。而烟炱一般常见于大气颗粒物中,因颗粒粒径小,可以随大气环流进行区域和全球传输。例如,Thevenon et al.(2007)2636-2639通过瑞士中部Lucerne湖泊沉积物中的木炭及飞灰记录分别重建过去的火灾变化及化石燃料燃烧历史。Wang et al.(2015)通过扫描电镜及透射电镜对不同燃烧源(机动车尾气、燃煤、生物质燃烧)的BC进行了区分,发现柴油车燃烧排放的BC颗粒呈球形,团聚成长链形,粒径小于50 nm;汽油车排放BC颗粒的粒径、形貌与柴油车相似,但聚合更加明显;燃煤排放BC颗粒一般是多孔的,形状不都是球形;生物质燃烧排放BC颗粒呈块状或不规则形状,而且保留植物纤维的结构(多孔状或管状)。

这种方法的缺陷在于微观形态下观察时,十分容易将颗粒小的丝炭(fusain)误认为是焦炭/木炭(Scott,2000),这可能直接导致BC源解析的结果出现偏差。

1.7 苯多羧酸分子标志物比值分析

研究发现,BC经硝酸高温氧化后会形成一系列含不同数量羧酸基团(-COOH)的苯多羧酸(benzene polycarboxylic acids,BPCAs)化合物(Brodowski et al.,2005b;Glaser et al.,1998;Hammes et al.,2008;Ziolkowski et al.,2010),一般焦炭形成的 BPCAs含有较少的羧酸基团(平均值为4.5),而烟炱形成的BPCAs含有更多的几乎完全替代的羧酸基团(平均值为5.5)(Ziolkowski,2009)。Hammes et al.(2007)通过对比实验研究认为苯多羧酸分子标志物法是分析溶液中BC组分的最合适方法,而且该方法能够识别和定量一些 BC标志物,这些标志物与BC的来源及形成条件可能存在密切联系。Ziolkowski et al.(2009)215-217通过BPCAs方法分别对两种单壁碳纳米管、两种富勒烯和两种烟炱进行了研究,结果发现经过高压和高温氧化以后,这些物质主要生成完全替换的苯六甲酸(B6CA),说明这些化合物具有浓缩态特征。他们同时指出如果BC经氧化后形成的BPCAs是以较少羧酸基团的BPCAs(如B3CA、B4CA或B5CA)为主,那么BC来源物质主要是低浓缩芳香环结构。随后,Ziolkowski et al.(2010)2-3将该方法应用于河流和海洋水溶性有机碳(Dissolved organic carbon,DOC)中 BC的分析研究,他们发现Suwannee河水DOC中的BC主要氧化为B5CA和B6CA,而海水DOC中的BC则主要氧化为B3CA和B4CA,说明陆源的BC比开放式海洋中BC具有更高浓缩态的芳香环结构。

需要注意的是,该方法测量的是高温氧化过程中形成的非硝化BPCAs,没有考虑到BC氧化产物中其实也包含了大量硝化的BPCAs,而且硝酸氧化并不能将BC完全转化为BPCAs,因此测定分析过程中会导致一些偏差的产生。最新的研究指出,B3CA和B4CA并不只是来源于BC,当土壤样品中OC的含量超过5 mg时,它们也可能来源于样品处理过程中有机质的氧化(Kappenberg et al.,2016)。由此可见,使用BPCAs法进行BC来源解析时需要特别小心。

2 主要结论与展望

黑碳作为地球环境系统中非常重要的一种物质,因其特殊的理化性质所带来的环境、气候和健康效应而成为全球性的热点问题。然而,由于黑碳来源具有多样性,不同来源形成的黑碳理化性质也存在较大差异,这将直接影响到黑碳在全球环境系统中的迁移、转化和生物地球化学循环过程。要系统研究黑碳的环境行为,除了对不同环境介质中的黑碳进行定量分析来了解其储量大小及降解转化的速率以外,还要解析其来源并计算不同来源的贡献。只有充分掌握黑碳在不同环境介质中的来源信息,才能准确地探求黑碳对全球气候和环境的影响,才能为地方、区域或全球黑碳控制减排提供相应的参考依据。

(1)目前,黑碳来源解析研究主要集中在大气气溶胶,而对于其它环境介质(如沉积物、土壤、水体、雪冰等)中黑碳的来源解析研究还较为少见。放射性(14C)和稳定性(δ13C)碳同位素技术被认为是黑碳来源解析研究中最有效和最准确的两种方法,虽然它们的应用仍局限在较小的范围,但仍然是未来发展的主要方向。应着力于研究不同介质中δ13C的分馏机制及不同排放源样品黑碳的δ13C和14C值域“特征谱”,以期提供更准确和更完善的来源信息,并进一步减小源解析的不确定性。

(2)虽然人们已经建立多种不同的黑碳分离与测定方法,但是到目前为止,黑碳分离测定还没有统一的标准方法。一些新的方法也需要进一步的优化、改进、完善和评价。这给黑碳的来源解析,特别是估算黑碳的来源贡献带来较大的困难。因此,需通过加强国内相关研究单位与国外实验室之间的对比实验与合作,尽快规范样品黑碳分离和测定技术。

(3)在黑碳来源解析研究中,利用单一的某种方法可能难以获得准确的黑碳来源信息,一定要结合其他的一些分子标志物的测定或源解析方法。多指标联合分析方法将有利于黑碳来源的准确判断,同时也可以从一定程度上对解析结果进行检验和印证。

ACCARDI-DEY A. 2003. Black carbon in marine sediments: quantification and implications for the sorption of polycyclic aromatic hydrocarbons [D]. Cambridge, Massachusetts: Massachusetts Institute of Technology. ATKINSON C J, FITZGERALD J D, HIPPS N A. 2010. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review [J]. Plant and Soil, 337(1-2): 1-18.

BEESLEY L, MORENO-JIMÉNEZ E, GOMEZ-EYLES J L, et al. 2011. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils [J]. Environmental Pollution, 159(12): 3269-3282.

BIRD M I, ASCOUGH P L. 2012. Isotopes in pyrogenic carbon: a review [J]. Organic Geochemistry, 42(12): 1529-1539.

BIRD M I, CALI J A. 1998. A million-year record of fire in sub-Saharan Africa [J]. Nature, 394(6695): 767-769.

BIRD M I, GRÖCKE D R. 1997. Determination of the abundance and carbon isotope composition of elemental carbon in sediments [J]. Geochimica et Cosmochimica Acta, 61(16): 3413-3423.

BIRD M I, WYNN J G, SAIZ G, et al. 2015. The Pyrogenic Carbon Cycle [J]. Annual Review of Earth and Planetary Sciences, 43(1): 273-298.

BISIAUX M, EDWARDS R, MCCONNELL J, et al. 2012. Variability of black carbon deposition to the East Antarctic Plateau, 1800—2000 AD [J]. Atmospheric Chemistry and Physics, 12(8): 3799-3808.

BOND TC, DOHERTY S J, FAHEY D, et al. 2013. Bounding the role of black carbon in the climate system: A scientific assessment [J]. Journal of Geophysical Research: Atmospheres, 118(11): 5380-5552.

BRODOWSKI S, AMELUNG W, HAUMAIER L, et al. 2005a. Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy [J]. Geoderma, 128(1-2): 116-129.

BRODOWSKI S, RODIONOV A, HAUMAIER L, et al. 2005b. Revised black carbon assessment using benzene polycarboxylic acids [J]. Organic Geochemistry, 36 (9): 1299-1310.

BUDHAVANT K, ANDERSSON A, BOSCH C, et al. 2015. Radiocarbon-based source apportionment of elemental carbon aerosols at two South Asian receptor observatories over a full annual cycle [J]. Environmental Research Letters, 10(6): 064004.

BUSECK P, ADACHI K, GELENCSÉR A, et al. 2012. Are black carbon and soot the same? [J]. Atmospheric Chemistry and Physics Discussions, 12(9): 24821-24846.

CAO J J, CHOW J C, LEE S C, et al. 2005. Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi'an, China [J]. Atmospheric Chemistry and Physics, 5(3): 3127-3137.

CAO J J, CHOW J C, TAO J, et al. 2011. Stable carbon isotopes in aerosols from Chinese cities: Influence of fossil fuels [J]. Atmospheric Environment, 45(6): 1359-1363.

CEBURNIS D, GARBARAS A, SZIDAT S, et al. 2011. Quantification of the carbonaceous matter origin in submicron marine aerosol by13C and14C isotope analysis [J]. Atmospheric Chemistry and Physics, 11(16): 8593-8606.

CHANG S, JEONG G, KIM S. 2008. The origin of black carbon on speleothems in tourist caves in South Korea: chemical characterization and source discrimination by radiocarbon measurement [J]. Atmospheric Environment, 42(8): 1790-1800.

CHEN B, ANDERSSON A, LEE M, et al. 2013. Source forensics of black carbon aerosols from China [J]. Environmental Science & Technology, 47(16): 9102-9108.

CHEN L-W A, MOOSMÜLLER H, ARNOTT W P, et al. 2007. Emissions from laboratory combustion of wildland fuels: Emission factors and source profiles [J]. Environmental Science & Technology, 41(12): 4317-4325.

CHOW J C, WATSON J G, KUHNS H, et al. 2004. Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational study [J]. Chemosphere, 54(2): 185-208.

CONG Z Y, KANG S C, GAO S P, et al. 2013. Historical trends of atmospheric black carbon on Tibetan Plateau as reconstructed from a 150-year lake sediment record [J]. Environmental Science & Technology, 47(6): 2579-2586.

DAS O, WANG Y, HSIEH Y P. 2010. Chemical and carbon isotopic characteristics of ash and smoke derived from burning of C3and C4grasses [J]. Organic Geochemistry, 41(3): 263-269.

DENIES P. 1980. The isotopic composition of reduce organic carbon[M] //FRITZ P, FONTES J C. Handbook of envi-ronmental isotopic geochemistry. The Terrestrial Environment, vol. 1. Amsterdam: Elsevier: 329-406.

DICKENS A F, GELINAS Y, MASIELLO C A, et al. 2004. Reburial of fossil organic carbon in marine sediments [J]. Nature, 427: 336-339.

GLASER B, HAUMAIER L, GUGGENBERGER G, et al. 1998. Black carbon in soils: the use of benzenecarboxylic acids as specific markers [J]. Organic Geochemistry, 29(4): 811-819.

GOLDBERG E D. 1985. Black carbon in the environment [M]. New York: John Wiley and Sons.

GOMEZ-EYLES J L, SIZMUR T, COLLINS C D, et al. 2011. Effects of biochar and the earthworm Eisenia fetida on the bioavailability of polycyclic aromatic hydrocarbons and potentially toxic elements [J]. Environmental Pollution, 159(2): 616-622.

GURWICK N P, MOORE L A, KELLY C, et al. 2013. A systematic review of biochar research, with a focus on its stability in situ and its promise as a climate mitigation strategy [J]. Plos One, 8(9): e75932.

GUSTAFSSON Ö, GSCHWEND P. 1998. The flux of black carbon to surface sediments on the New England continental shelf [J]. Geochimica et Cosmochimica Acta, 62(3): 465-472.

GUSTAFSSON Ö, KRUSA M, ZENCAK Z, et al. 2009. Brown clouds over South Asia: biomass or fossil fuel combustion? [J]. Science, 323(5913): 495-498.

HALL G, WOODBORNE S, SCHOLES M. 2008. Stable carbon isotope ratios from archaeological charcoal as palaeoenvironmental indicators [J]. Chemical Geology, 247(3-4): 384-400.

HAMMES K, SCHMIDT M W I, SMERNIK R J, et al. 2007. Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water,sediment and the atmosphere [J]. Global Biogeochemical Cycles, DOI: 3010.1029/2006GB002914.

HAMMES K, TORN M S, LAPENAS A G, et al. 2008. Centennial black carbon turnover observed in a Russian steppe soil [J]. Biogeosciences, 5(5): 1339-1350.

HAN Y M, BANDOWE B, WEI C, et al. 2015a. Stronger association of polycyclic aromatic hydrocarbons with soot than with char in soils and sediments [J]. Chemosphere, 119: 1335-1345.

HAN Y M, CAO J J, CHOW J C, et al. 2007. Evaluation of the thermal/optical reflectance method for discrimination between char-and soot-EC [J]. Chemosphere, 69(4): 569-574.

HAN Y M, CAO J J, CHOW J C, et al. 2009a. Elemental carbon in urban soils and road dusts in Xi'an, China and its implication for air pollution [J]. Atmospheric Environment, 43(15): 2464-2470.

HAN Y M, CAO J J, LEE S C, et al. 2010. Different characteristics of char and soot in the atmosphere and their ratio as an indicator for source identification in Xi'an, China [J]. Atmospheric Chemistry and Physics, 10(2): 595-607.

HAN Y M, CAO J J, YAN B Z, et al. 2011. Comparison of elemental carbon in lake sediments measured by three different methods and 150-year pollution history in eastern China [J]. Environmental Science & Technology, 45(12): 5287-5293.

HAN Y M, HAN Z W, CAO J J, et al. 2008. Distribution and origin of carbonaceous aerosol over a rural high-mountain lake area, Northern China and its transport significance [J]. Atmospheric Environment, 42(10): 2405-2414.

HAN Y M, LEE S C, CAO J J, et al. 2009b. Spatial distribution and seasonal variation of char-EC and soot-EC in the atmosphere over China [J]. Atmospheric Environment, 43(38): 6066-6073.

HAN Y M, MARLON J, CAO J J, et al. 2012. Holocene linkages between char, soot, biomass burning and climate from lake Daihai, China [J]. Global Biogeochemical Cycles, DOI: 4010.1029/2011GB004197.

HAN Y M, PETEET D, ARIMOTO R, et al. 2016a. Climate and fuel controls on North American Paleofires: smoldering to flaming in the Late-glacial-Holocene transition [J]. Scientific Reports, DOI: 20710.21038/srep20719.

HAN Y M, WEI C, BANDOWE B A, et al. 2015b. Elemental carbon and polycyclic aromatic compounds in a 150-yr sediment core from lake Qinghai, Tibetan plateau, China: influence of regional and local sources and transport pathways [J]. Environmental Science & Technology, 49(7): 4176-4183.

HAN Y M, WEI C, HUANG R J, et al. 2016b. Reconstruction of atmospheric soot history in inland regions from lake sediments over the past 150 years [J]. Scientific Reports, DOI: 19110.11038/srep19151.

HANSEN J, NAZARENKO L. 2004. Soot climate forcing via snow and ice albedos [J]. Proceedings of the National Academy of Sciences, 101(2): 423-428.

HEDGES J I, EGLINTON G, HATCHER P G, et al. 2000. The molecularly-uncharacterized component of nonliving organic matter in natural environments [J]. Organic Geochemistry, 31(10): 945-958.

JANSEN K L, LARSON T V, KOEING J Q, et al. 2005. Associations between health effects and particulate matter and black carbon in subjects with respiratory disease [J]. Environmental Health Perspectives, 113(1): 1741-1746.

JENK T M, SZIDAT S, SCHWIKOWSKI M, et al. 2006. Radiocarbon analysis in an Alpine ice core: record of anthropogenic and biogenic contributions to carbonaceous aerosols in the past (1650—1940) [J]. Atmospheric Chemistry and Physics, 6(12): 5381-5390.

JOSÉ M, MARTINS J M, SOARES A M, et al. 2015. Assessment of distribution and sources of pyrogenic carbon in the lower course of the Guadiana River (SW Iberian Peninsula) [J]. Journal of Soils and Sediments, 15(4): 759-768.

KAPPENBERG A, BLÄSING M, LEHNDORFFff E, et al. 2016. Black carbon assessment using benzene polycarboxylic acids: Limitations for organic-rich matrices [J]. Organic Geochemistry, 94: 47-51.

KAWASHIMA H, HANEISHI Y. 2012. Effects of combustion emissions from the Eurasian continent in winter on seasonal δ13C of elemental carbon in aerosols in Japan [J]. Atmospheric Environment, 46: 568-579.

KIM K H, SEKIGUCHI K, KUDO S, et al. 2011. Characteristics of atmospheric elemental carbon (char and soot) in ultrafine and fine particles in a roadside environment, Japan [J]. Aerosol and Air Quality Resarch, 11: 1-12.

KRULL E S, SKJEMSTAD J O, GRAETZ D, et al. 2003.13C-depleted charcoal from C4grasses and the role of occluded carbon in phytoliths [J]. Organic Geochemistry, 34(9): 1337-1352.

KUHLBUSCH T A J. 1998. Black carbon and carbon cycle [J]. Science, 280(5371): 1903-1904.

LAIRD D A, FLEMING P, DAVIS D D, et al. 2010. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil [J]. Geoderma, 158(3-4): 443-449.

LEHMANN J, JOSEPH S. 2009. Biochar for environmental management: an introduction[M] //LEHMANN J, JOSEPH S. Biochar for environmental management science and technology. London: Earthscan: 1-12.

LEHMANN J. 2007. Bio-energy in the black [J]. Frontiers in Ecology and the Environment, 5(7): 381-387.

LEHNDORFF E, BRODOWSKI S, SCHMIDT L, et al. 2015a. Industrial carbon input to arable soil since 1958 [J]. Organic Geochemistry, 80: 46-52.

LEHNDORFF E, WOLF M, LITT T, et al. 2015b. 15000 years of black carbon deposition-a post-glacial fire record from maar lake sediments (Germany) [J]. Quaternary Science Reviews, 110: 15-22.

LIANG B, LEHMANN J, SOLOMON D, et al. 2006. Black carbon increases cation exchange capacity in soils [J]. Soil Science Society of America Journal, 70(5): 1719-1730.

LIM S, LEE M, LEE G, et al. 2011. Ionic and carbonaceous compositions of PM10, PM2.5and PM1.0at Gosan ABC Superstation and their ratios as source signature [J]. Atmospheric Chemistry and Physics, 11(7): 20521-20573.

LIU D, LI J, ZHANG Y L, et al. 2013. The use of levoglucosan and radiocarbon for source apportionment of PM2.5carbonaceous aerosols at a background site in East China [J]. Environmental Science & Technology, 47(18): 10454-10461.

LIU S D, XIA X H, ZHAI Y W, et al. 2011. Black carbon (BC) in urban and surrounding rural soils of Beijing, China: Spatial distribution and relationship with polycyclic aromatic hydrocarbons (PAHs) [J]. Chemosphere, 82(2): 223-228.

LÓPEZ-VENERONI D. 2009. The stable carbon isotope composition of PM2.5and PM10in Mexico City Metropolitan Area air [J]. Atmospheric Environment, 43(29): 4491-4502.

LUCCHINI P, QUILLIAM R, DELUCA T H, et al. 2014. Does biochar application alter heavy metal dynamics in agricultural soil? [J]. Agriculture, Ecosystems & Environment, 184: 149-157.

MASIELLO C A. 2004. New directions in black carbon organicgeochemistry [J]. Marine Chemistry, 92(1-4): 201-213.

MCCONNELL J, EDWARDS R, KOK G, et al. 2007. 20th-century industrial black carbon emissions altered arctic climate forcing [J]. Science, 317(5843): 1381-1384.

MENON S, HANSEN J, NAZARENKO L, et al. 2002. Climate effects of black carbon aerosols in China and India [J]. Science, 297(5590): 2250-2253.

MING J, XIAO C D, CACHIER H, et al. 2009. Black Carbon (BC) in the snow of glaciers in west China and its potential effects on albedos[J]. Atmospheric Research, 92(1): 114-123.

MITRA S, BIANCHI T, MCKEE B, et al. 2002. Black carbon from the Mississippi river: Quantities, sources, and potential implications for the global carbon cycle [J]. Environmental Science & Technology, 36(11): 2296-2302.

MURI G, CERMELJ B, FAGANELI J, et al. 2002. Black carbon in Slovenian alpine lacustrine sediments [J]. Chemosphere, 46(8): 1225-1234.

NOVAKOV T, ANDREAE M, GABRIEL R, et al. 2000. Origin of carbonaceous aerosols over the tropical Indian ocean: biomass burning or fossil fuels? [J]. Geophysical Research Letters, 27(24): 4061-4064.

RAMANATHAN V, CARMICHAEL G. 2008. Global and regional climate changes due to black carbon [J]. Nature Geoscience, 1(4): 221-227.

REDDY C M, PEARSON A, XU L, et al. 2002. Radiocarbon as a tool to apportion the sources of polycyclic aromatic hydrocarbons and black carbon in environmental samples [J]. Environmental Science & Technology, 36(8): 1774-1782.

SCHMIDT M W I, NOACK A G. 2000. Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges [J]. Global Biogeochemical Cycles, 14 (3): 777-793.

SCHMIDT M W I, SKJEMSTAD J O, GEHRT E, et al. 1999. Charred organic carbon in German chernozemic soils [J]. European Journal of Soil Science, 50(2): 351-365.

SCHMIDT M W I, SKJEMSTAD J O, JÄGER C. 2002. Carbon isotope geochemistry and nanomorphology of soil black carbon: Black chernozemic soils in central Europe originate from ancient biomass burning [J]. Global Biogeochemical Cycles, DOI: 10.1029/2002GB001939, 2002.

SCOTT A C. 2000. The Pre-Quaternary history of fire [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 164(1-4): 281-329.

SCOTT A C. 2010. Charcoal recognition, taphonomy and uses in palaeoenvironmental analysis [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 291(1-2): 11-39.

SHRESTHA G, TRAINA S J, SWANSTON C W. 2010. Black carbon’s properties and role in the environment: a comprehensive review [J]. Sustainability, 2(1): 294-320.

SINGH B P, COWIE A L, SMERNIK R J. 2012. Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature [J]. Environmental science & technology, 46(21): 11770-11778.

SOHI S P. 2012. Carbon storage with benefits [J]. Science, 338(6110): 1034-1035

SÜMEGI P, RUDNER Z E. 2001. In situ charcoal fragments as remains of natural wild fires in the upper Würm of the Carpathian basin [J]. Quaternary International, 76-77: 165-176.

THEVENON F, ANSELMETTI F S. 2007. Charcoal and fly-ash particles from Lake lucerne sediments (Central Switzerland) characterized by image analysis: anthropologic, stratigraphic and environmental implications [J]. Quaternary Science Reviews, 26(19-21): 2631-2643.

TIE X X, HUANG R J, DAI W, et al. 2016. Effect of heavy haze and aerosol pollution on rice and wheat productions in China [J]. Scientific Reports, DOI: 10.1038/srep29612.

WANG H L, NIE L, LIU D, et al. 2015. Physico-chemical characterization and source tracking of black carbon at a suburban site in Beijing [J]. Journal of Environmental Sciences, 33: 188-194.

WANG Q, LIU M, YU Y P, et al. 2014. Black carbon in soils from different land use areas of Shanghai, China: level, sources and relationship with polycyclic aromatic hydrocarbons [J]. Applied Geochemistry, 47: 36-43.

WANG X, CUI L L, XIAO J L, et al. 2013. Stable carbon isotope of black carbon in lake sediments as an indicator of terrestrial environmental changes: An evaluation on paleorecord from Daihai lake, Inner Mongolia, China [J]. Chemical Geology, 347: 123-134.

WANG X, PENG P A, DING Z L. 2005. Black carbon records in Chinese Loess Plateau over the last two glacial cycles and implications for paleofires [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 223(1-2): 9-19.

WHITLOCK C, BIANCHI M M, BARTLEIN P J, et al. 2006. Postglacial vegetation, climate, and fire history along the east side of the Andes (lat 41-42.5°S), Argentina [J]. Quaternary Research, 66(2): 187-201.

WHITLOCK C, LARSEN C. 2002. Charcoal as a fire proxy [J]. Developments in Paleoenvironmental Research, 3: 75-97.

WHITMAN T, SCHOLZ S M, LEHMANN J. 2010. Biochar projects for mitigating climate change: an investigation of critical methodology issues for carbon accounting [J]. Carbon Management, 1(1): 89-107.

WINIGER P, ANDERSSON A, YTTRI K E, et al. 2015. Isotope-based source apportionment of EC aerosol particles during winter high-pollution events at the Zeppelin Observatory, Svalbard [J]. Environmental Science & Technology, 49(19): 11959-11966.

XU B Q, CAO J J, HANSEN J, et al. 2009. Black soot and the survival of Tibetan glaciers [J]. Proceedings of the National Academy of Sciences, 106(52): 22114-22118.

YAVARI S, MALAKAHMAD A, SAPARI N B. 2015. Biochar efficiency in pesticides sorption as a function of production variables-a review [J]. Environmental Science and Pollution Research, 22(18): 13824-13841.

ZHAN C L, CAO J J, HAN Y M, et al. 2015. Spatial patterns, storages and sources of black carbon in soils from the catchment of Qinghai Lake, China [J]. European Journal of Soil Science, 66(3): 525-534.

ZHAN C L, ZHANG J Q, CAO J J, et al. 2016. Characteristics and sources of black carbon in atmospheric dustfall particles from Huangshi, China [J]. Aerosol and Air Quality Research, DOI: 10.4209/aaqr.2015.09.0562.

ZHANG Y L, LI J, ZHANG G, et al. 2014. Radiocarbon-based source apportionment of carbonaceous aerosols at a regional background site on Hainan island, South China [J]. Environmental Science & Technology, 48(5): 2651-2659.

ZIOLKOWSKI L A, DRUFFEL E R. 2009. The feasibility of isolation and detection of fullerenes and carbon nanotubes using the benzene polycarboxylic acid method [J]. Marine Pollution Bulletin, 59(4): 213-218.

ZIOLKOWSKI L A, DRUFFEL E R. 2010. Aged black carbon identified in marine dissolved organic carbon [J]. Geophysical Research Letters, DOI: 10.1029/2010GL043963.

ZIOLKOWSKI L A. 2009. Radiocarbon of black carbon in marine dissolved organic carbon [D]. Irvine: University of California.

曹芳, 章炎麟. 2015. 碳质气溶胶的放射性碳同位素 (14C) 源解析: 原理, 方法和研究进展[J]. 地球科学进展, 30(4): 425-432.

陈衍婷, 赵金平, 尹丽倩, 等. 2012. 厦门近海沉积物中高分子有机质的来源初探[J]. 生态环境学报, 21(3): 509-514.

陈颖军, 蔡伟伟, 黄国培, 等. 2012. 典型排放源黑碳的稳定碳同位素组成研究[J]. 环境科学, 33(3): 673-678.

何跃, 张甘霖, 杨金玲, 等. 2007. 城市化过程中黑碳的土壤记录及其环境指示意义[J]. 环境科学, 28(10): 2369-2375.

何跃, 张甘霖. 2006. 城市土壤有机碳和黑碳的含量特征与来源分析[J].土壤学报, 43(2): 177-182.

汪青. 2012. 土壤和沉积物中黑碳的环境行为及效应研究进展[J]. 生态学报, 32(1): 293-310.

徐福银, 包兵, 方海兰. 2014. 上海市城市绿地土壤中黑碳分布特征[J].土壤通报, 45(2): 457-461.

尹云锋, 杨玉盛, 高人, 等. 2009. 皆伐火烧对杉木人工林土壤有机碳和黑碳的影响[J]. 土壤学报, 46(2): 352-355.

张世春, 王毅勇, 童全松. 2013. 碳同位素技术在碳质气溶胶源解析中应用的研究进展[J]. 地球科学进展, 28(1): 62-70.

Source Apportionment of Black Carbon in the Environment: A Review of Methods

ZHAN Changlin1,2, WAN Dejun3, ZHANG Jiaquan1, HAN Yongming2,4, CAO Junji2,4, LIU Xianli1

1. School of Environmental Science and Engineering, Hubei Polytechnic University//Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Huangshi 435003, China; 2. Key Lab of Aerosol Chemistry & Physics//Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China; 3. Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China; 4. Institute of Global Environmental Change, Xi’an Jiaotong University, Xi'an 710049, China

Black carbon (BC) is produced by the incomplete combustion of fossil fuel and biomass, formed a special kind of inhomogeneous carbonaceous particulate matter. BC is highly recalcitrant and persists in the environment for millennia. It is of great significance in the global climate change and environment system, and become the focus of current international earth and environmental sciences. Due to the different combustion condition and the fuel source, the physical and chemical properties of the BC component are complex and highly variable, and the environmental behaviors and effects are also obviously different. Therefore, the source apportionment of BC is very important. It is more conducive to find out the global carbon balance and better know the migration and transformation progress in different environmental media. This paper mainly summarizes the current knowledge of the source apportionment methods of BC as well as the research progress of its application. Finally we put forward the future development direction of methods for BC source apportionment. Stable carbon and radiocarbon isotope analysis are the two mostly used methods in the source apportionment of BC, and the combination of them can not only provide more accurate information of BC source, and can quantitatively estimate the contribution of biomass burning and fossil fuel to BC. The methods of biomarkers ratios of polycyclic aromatic hydrocarbons (PAHs), the ratio of BC to organic carbon (OC), molecular marker ratios of benzene polycarboxylic acids (BPCAs), and morphological analysis can only indirectly determine the BC sources, and the application has limitations and uncertainties. There is a need for further strengthen the study of fractionation mechanism of δ13C in different media and the domain features of δ13C and14C for BC in different samples of emission source, and standardize protocols within individual methods for BC analysis. Moreover, there is an ongoing need to give full play to the advantages of different analytical technologies, combined a variety of methods will provide more information about sources, translocation and transformation progresses of BC.

black carbon; source apportionment; carbon isotope; ratio

10.16258/j.cnki.1674-5906.2016.09.023

X13; P532

A

1674-5906(2016)09-1575-09

占长林, 万的军, 张家泉, 韩永明, 曹军骥, 刘先利. 2016. 环境中黑碳来源解析方法研究进展[J]. 生态环境学报, 25(9): 1575-1583.

ZHAN Changlin, WAN Dejun, ZHANG Jiaquan, HAN Yongming, CAO Junji, LIU Xianli. 2016. Source apportionment of black carbon in the environment: a review of methods [J]. Ecology and Environmental Sciences, 25(9): 1575-1583.

国家自然科学基金项目(41603117);湖北理工学院引进人才项目(16xjz02R)

占长林(1983年生),男,讲师,博士,研究方向为环境地球化学。E-mail: zhancl@ieecas.cn *通信作者

2016-08-02

猜你喜欢
来源化石生物质
将来吃鱼不用调刺啦
生物质挥发分燃烧NO生成规律研究
《生物质化学工程》第九届编委会名单
《造纸与生物质材料》(英文)2020年第3期摘要
试论《说文》“丵”字的来源
“赤”的来源与“红”在服装中的应用
生物质碳基固体酸的制备及其催化性能研究
第三章 化石大作战
第三章 化石大作战
关于『座上客常满;樽中酒不空』的来源